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Abstract: The article examines the initial problems that led to the creation of 

dynamic systems. Numerical solutions are found for a time-continuous analogue of a 

fixed non-Volterra quadratic stochastic operator with discrete time. Using the 

MathCAD mathematical package, numerical solutions were determined for various 

initial values and parameters, and graphs and phase trajectories of the solutions were 

constructed. The advantages and disadvantages of the Runge-Kutte method used in 

solving the problem are highlighted. 
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Introduction. The development of living things manifests itself differently in 

different processes. It is influenced by birth, growth, individuality, death of 

individuals, external environment, and so on. Taking these circumstances into 

account, a mathematical model of a biological population is constructed. 

The number of the population changes and dynamics (population dynamics is a 

change in its biological and group properties over time. The most important 

characteristics for observing population dynamics are such characteristics as changes 

in the number of individuals, their biomass, as well as changes in age and sex 

structure) represents. Population dynamics is a branch of mathematical biology and is 

a field that focuses on determining the state of a population in time. Because, if every 

process is mathematically modeled, this modeling gives an opportunity to get 

complete information about the studied process, makes it possible to draw 

conclusions about the future situation. 

The setting of mathematical problems for the study of biological processes 

(population) dates back to ancient times. Indeed, it is important to study such issues 

and draw conclusions.  

The first research on the mathematical model of the biological population is 

presented in the work of Leonardo Fibonacci, who lived in 1170-1240, «Treatise on 

counting» («Liber abaci»).  

This book, which is a collection of arithmetic and algebraic information, deals 

with the following problem, which was widespread at that time and later throughout 

Europe: «how many rabbits are born from a pair of rabbits in a year, if two months 
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after the birth of a pair of rabbits, one rabbit is born from them». The solution to this 

problem consists of the following numbers: 

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ... 

These numbers went down in history as Fibonacci numbers.  

In real populations, reproduction and mortality rates vary among different 

groups. For example, insects lay eggs and their enemies kill the larvae, in addition, 

they are affected by environmental metabolic products, cannibalism and poisoning, 

age stages and their intensity. In other words, population dynamics are mainly 

affected by birth rate, mortality, and population growth rate: birth rate is the number 

of new individuals appearing per unit of time as a result of reproduction; mortality - 

the number of individuals who died in a population per unit of time; population 

growth rate - change in population size per unit of time. 

In turn, the analysis of the dynamics of the biological population is important 

both theoretically and practically. Methods of controlling the reproduction of pest 

insects (releasing sterile male insects, pheromone traps, etc.) are aimed at creating a 

certain imbalance in the population structure, which slows down their reproduction 

and leads to its destruction. These issues are one of the urgent issues of 

epidemiology. 

Quadratic stochastic operators are used to solve problems that arise in a 

biological population. Quadratic operators attract the attention of specialists in 

various fields of mathematics and its applications (see, for example, [1]-[2]). The 

concept of a quadratic stochastic operator was first formulated in article [3]. In the 

work of S. Ulam [4], the problem was posed of studying the behavior of trajectories 

of quadratic stochastic operators. This problem is mainly solved for Volterra 

operators (see [6]-[7]. But the class of non-Volterra operators has been little studied. 

In this paper, we study one particular case of a continuous analogue of a quadratic 

stochastic operator [8], which we will call strictly non-Volterra. Note that the class of 

strictly non-Volterra operators is a subclass of non-Volterra operators. Since there is 

no general theory studying such operators, it is natural to first study their subclasses. 

The motivation for considering arbitrary quadratic operators can be found, for 

example, in [5] and [9]. Consequently, each operator is an interesting example in the 

theory of multidimensional, nonlinear dynamic systems, with diverse behavior of 

trajectories. 

These models, built on the basis of the system of ordinary differential equations, 

do not give positive results (since the reproduction process is discrete) in expressing 

the dynamics of seasonal reproduction of many other species. 

Mathematical models of these types of processes, represented by a system of 

simple differential equations with momentum, are the most suitable models and 

represent the studied process close to the real one. As we mentioned above, the 
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mathematical model of the evolution of populations in biology is represented by 

quadratic stochastic operators [3].  

The problem of finding a limited distribution of individuals of different types 

during the evolution of a biological system is equivalent to studying the asymptotic 

properties of a quadratic stochastic operator. In addition, the number of simple and 

non-standard problems and unsolved problems in the theory of quadratic stochastic 

operators are of great interest from a mathematical point of view. 

The non-linearity of operators, the presence of complex and difficult 

calculations in the study of trajectories, the lack of widespread development of 

methods for finding analytical solutions and the need to perform a large number of 

calculations when studying quadratic operators did not generate interest in solving 

these types of problems. However, as a result of the advent of computers, interest in 

the problem of studying the state of the trajectories of quadratic stochastic operators 

has been revived. Ulam and his colleagues did quite a bit of computing on learning 

quadratic operators. 

In [8], the discrete-time case of a strictly non-Volterra dynamical system is 

studied. Thus, in this work the uniqueness of the fixed point is proved. This fixed 

point has been proven to be non-attractive. A description of the 𝜔 −limit set of a 

trajectory for some subclasses of such operators is given. It is shown that, unlike 

Volterra operators, strictly non-Volterra operators have cyclic trajectories. For two 

specific operators, it is proved that there exists a cyclic trajectory with period 3, and 

any trajectory starting on the boundary of a simplex converges to this cyclic 

trajectory, and trajectories with an initial point (not fixed) lying inside the simplex 

diverge; The 𝜔 −limit set of such a trajectory is infinite and lies on the boundary of 

the simplex. Subclasses of strictly non-Volterra operators are also studied, the 

trajectories of which in the limit tend to a cyclic trajectory with period 2. 

The main part. In this paper, a continuous-time analogue of a particular case of a 

discrete-time non-Volterra discrete-time dynamical system studied in [8] a scientific 

work is studied. The continuous-time analogue of the quadratic stochastic operator 

studied in the scientific research of U.A. Rozikov and U.U. Jamilov (in general) has 

the following form: 

{

�̇�1 = 𝛼𝑥2
2+𝑐𝑥3

2 + 2𝑥2𝑥3 − 𝑥1 = 𝑓1(𝑥1, 𝑥2, 𝑥3),

�̇�2 = 𝑎𝑥1
2+𝑑𝑥3

2 + 2𝑥1𝑥3 − 𝑥2 = 𝑓2(𝑥1, 𝑥2, 𝑥3),

�̇�3 = 𝑏𝑥1
2+𝛽𝑥2

2 + 2𝑥1𝑥2 − 𝑥3 = 𝑓3(𝑥1, 𝑥2, 𝑥3)

 (1) 

or vector representation of this system 

𝑥(𝑡) = 𝑓(𝑥(𝑡)), 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)), 

𝑓(𝑥(𝑡)) = (𝑓1(𝑥(𝑡)), 𝑓2(𝑥(𝑡)), 𝑓3(𝑥(𝑡))), 
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where 𝑥(𝑡) is the state of a biological system, 𝑡 ≥ 0, 𝑥1(𝑡) ≥ 0, 𝑥2(𝑡) ≥

0, 𝑥3(𝑡) ≥ 0.  

We are following the parameters and the solution we are looking for in this 

article 

𝑥1(𝑡) + 𝑥2(𝑡) + 𝑥3(𝑡) = 1, (2) 

𝛼, 𝛽, 𝑎, 𝑏, 𝑐, 𝑑 > 0, 𝛽 = 𝑏 = 𝑐 + 𝑑 = 1 (3) 

we study the case that satisfies these conditions. 

Main part. Search for fixed points of the system (1), numerical solutions, draw a 

phase portrait, analyze the obtained results. 

It should be said that the special discrete-time case of system (1) with 𝛼 = 𝛽 =

𝑎 = 𝑏 = 𝑐 = 𝑑 = 1 2⁄  was studied in [10], and the continuous-time case was studied 

in [11]. 

A system whose parameters (3) satisfy the condition (1) will be as follows: 

{

�̇�1 = 𝑥3
2 2⁄ + 2𝑥2𝑥3 − 𝑥1,

�̇�2 = 𝑥3
2 2⁄ + 2𝑥1𝑥3 − 𝑥2,

�̇�3 = 𝑥1
2+𝑥2

2 + 2𝑥1𝑥2 − 𝑥3.

 (4) 

For convenience, we omit the arguments of the functions. 

Definition. Points of the phase space satisfying 𝑓(𝑥∗(𝑡)) = 0 are said to be 

fixed points of system (1). Obviously, 𝑥∗(𝑡) −itself is a solution of equation (1), 

because �̇�∗(𝑡) = 0. 

To find the fixed points of the system (4), If we use 

𝑥1 + 𝑥2 + 𝑥3 = 1 

we determine that the system (4) has the following fixed points [8]: 

𝑥1
∗ =

(7 − 3√6) 2⁄ + 4√5 − 8

2(4 − √5)
, 𝑥2

∗ =
(3√5 − 7) 2⁄ + √5 − 1

2(4 − √5)
, 

 𝑥3
∗ =

3 − √5

2
. (5) 

That the system (4) has a unique fixed point 𝑀(𝑥1
∗, 𝑥2

∗, 𝑥3
∗) and the type of fixed 

point is detailed in [8]. 

As can be seen from the system (4), the first fixed point of the system is 

𝑀0(0,0,0). This fixed point cannot be an equilibrium state for the system (4), that 

satisfies the conditions of the problem under study. The fact that the point 𝑀0(0,0,0) 

cannot be an equilibrium state for the system (4) satisfying the condition of the 

problem is explained in detail in the article [12] in three different ways. Here is one 

method: 𝑥1 + 𝑥2 + 𝑥3 = 0. Considering that 𝑥1, 𝑥2, 𝑥3 are probabilities and 𝑥1 ≥

0, 𝑥2 ≥ 0, 𝑥3 ≥ 0 satisfy the inequality, the solution of the equation is 𝑥1 =  𝑥2 =

 𝑥3 = 0, which does not satisfy condition (2). Therefore, 𝑋 = 0 cannot be a solution 

to the main problem. 
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We consider the Cauchy problem for system (1). Let it be, at 𝑡 = 0 

𝑥1(0) = 𝑥1
0, 𝑥2 (0) = 𝑥2

0, 𝑥3(0) = 𝑥3
0 (6) 

The initial conditions (𝑥1
0, 𝑥2

0, 𝑥3
0)𝑇 are taken from the values corresponding to 

the columns of matrix 𝐵. 

𝐵 = (
0.1 0.2 0.33
0.3 0.4 0.1
0.6 0.4 0.57

 
0.2 0.44 0.23
0.7 0.22 0.4
0.1 0.34 0.37

 
0.55 0.3 0.5
0.44 0.3 0.4
0.01 0,4 0.1

 
0.01
0.08
0.91

) 

in this 𝐵 = (𝑥1
0, 𝑥2

0, 𝑥3
0)𝑇 . Numerical solutions of system (4) satisfying these 

initial conditions were found using MathCAD mathematical package. Graphs are 

presented in Figures 1-3. 

 
 

 
Charts 1-3 show graphs of numerical solutions of system (4) satisfying initial 

conditions (6) through 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡). 

 
Figure 4-5 shows the phase trajectories of numerical solutions 

(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)) and (𝑡, 𝑥1(𝑡), 𝑥2(𝑡)) of the system (4) satisfying the initial 

conditions (6) described.  

Figure 1 Figure 2 

Figure 3 

Figure 4 Figure 5 
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Figure 6 depicts the space-phase trajectory of numerical solutions 

(𝑡, , 𝑥2(𝑡), 𝑥3(𝑡)) of system (4) satisfying the initial conditions (6). 

Note that in [13], to study system (4), the explicit Euler method was used to 

numerically solve a system of ordinary differential equations (Cauchy problem). For 

various values, numerical solutions (2) were obtained using C++ programming. 

However, graphs of solutions and phase trajectories are not provided. In this 

article, using the mathematical package MathCAD, numerical solutions of the system 

were found. The fourth-order Runge-Kutte method was used to find numerical 

solutions [14-32]. 

 
Summary. Here, it should be said that, the explicit Runge-Kutte method was 

used to solve the problem. Unfortunately, explicit Runge-Kutta methods are, as a 

rule, unsuitable for solving rigid systems of equations due to the small region of their 

absolute stability. The instability of explicit Runge-Kutta methods creates very 

serious problems in the numerical solution of partial differential equations. 

If we analyze the solutions, starting from 𝑡 ≥ 3, it is observed that the solutions 

of the system (4), satisfying the initial conditions (5) tend to the fixed point. Here, 

using the methods used in the preparation of the article and the results obtained in the 

article [8], the following hypothesis can be stated. 

Hypothesis. Some solutions of system (4) tend to the fixed point in (5) at 

different initial values at 𝑡 ≥ 3.  

 

References 
1. Любич Ю.И. Математические структуры в популяционной генетике, 

Наукова думка, Киев, 1983. 

2. Jenks R.D. «Quadratic differential systems for interactive population 

models», J. Differential Equations, 5:3 (1969), 497–514. 

Figure 6 

"Science and Education" Scientific Journal / www.openscience.uz April 2024 / Volume 5 Issue 4

ISSN 2181-0842 / Impact Factor 4.182 240



3. С. Н. Бернштейн, «Решение одной математической проблемы, связанной 

с теорией наследственности», Ученые записки науч.-исслед. кафедры Украины. 

Отделение матем., 1924, №1, 83–115. 

4. S. M. Ulam, A collection of mathematical problems, New York–London, 

Interscience Publ., 1960. 

5. Kesten H. «Quadratic transformations: a model for population growth. II», 

Advances in Appl. Probability, 2:2 (1970), 179-228. 

6. Мухамедов Ф.М. «О бесконечномерных квадратичных вольтерровских 

операторах», УМН, 55:6 (2000), 149–150; англ. пер.: F. M. Mukhamedov, 

«Infinitedimensional quadratic Volterra operators», Russian Math. Surveys, 55:6 

(2000), 1161–1162. 

7. Н. Н. Ганиходжаев, Д. В. Занин, «Об одном необходимом условии 

эргодичности квадратичных операторов, определенных на двумерном 

симплексе», УМН, 59:3 (2004), 161–162; англ. пер.: N. N. Ganikhodzhaev, D. V. 

Zanin, «On a necessary condition for the ergodicity of quadratic operators defined on 

the two-dimensional simplex», Russian Math. Surveys, 59:3 (2004), 571–572. 

8. Жамилов У.У., Розиков У.А. О динамике строго невольтерровских 

квадратичных стохастических операторов на двумерном симплексе, 

Математический сборник, 2009, т. 200, № 9, 81-94. 

9. H. Kesten, «Quadratic transformations: a model for population growth. I», 

Advances in Appl. Probability, 2:1 (1970), 1–82. 

10. Р. Т. Мухитдинов, «О строго невольтерровском квадратичном 

операторе», Тезисы докладов международной конференции «Операторные 

алгебры и квантовая теория вероятностей» (Ташкент, 2005), Университет, 

Ташкент, 2005, 134–135. 

11. Rasulov X.R. Qualitative analysis of strictly non-Volterra quadratic 

dynamical systems with continuous time // Communications in Mathematics, 30 

(2022), no. 1, pp. 239-250. 

12. Rasulov X.R. Uzluksiz vaqtli qat’iy novolterra dinamik sistemasining sifatiy 

tahlili haqida. BuxDU Ilmiy axboroti, 2023 yil, 10-son, 34-39 b. 

13. Расулов Х.Р., Джуракулова Ф.М. Об одной динамической системе с 

непрерывным временем // Наука, техника и образование, 77:2-2 (2021) с. 19-22. 

14. Расулов Х.Р. Аналог задачи Трикоми для квазилинейного уравнения 

смешанного типа с двумя линиями вырождения // Вестн. Сам. гос. техн. ун-та. 

Сер. Физ.-мат. науки, 2022. Т. 26, № 4. 

15. Xaydar R. Rasulov. On the solvability of a boundary value problem for a 

quasilinear equation of mixed type with two degeneration lines // Journal of Physics: 

Conference Series 2070 012002 (2021), pp.1–11. 

"Science and Education" Scientific Journal / www.openscience.uz April 2024 / Volume 5 Issue 4

ISSN 2181-0842 / Impact Factor 4.182 241



16. Rasulov Kh.R. (2018). On a continuous time F - quadratic dynamical system 

// Uzbek Mathematical Journal, №4, pp.126-131. 

17. Расулов Х.Р., Раупова М.Х. Роль математики в биологических науках // 

Проблемы педагогики, № 53:2 (2021), с. 7-10. 

18. Raupovich, R. X., & kizi, R. M. H. (2023). General Аlgоrithm оn Fuzzy 

Subсlаssеs оf K-Vаluеd Lоgiс fоr Some Issues. European Journal of Higher 

Education and Academic Advancement, 1(2), 212–215.  

19. Бозорова Д.Ш., Раупова М.Х. О функции Грина вырождающегося 

уравнения эллиптического типа // Science and Education, scientific journal, 3:3 

(2022), с.14-22. 

20. Расулов Х.Р. О некоторых символах математического анализа // Science 

and Education, scientific journal, 2:11 (2021), p.66-77. 

21. Расулов Х.Р. О понятие асимптотического разложения и ее некоторые 

применения // Science and Education, scientific journal, 2:11 (2021), pp.77-88. 

22. Rasulov, R. X. R. (2022). Buzilish chizig’iga ega kvazichiziqli elliptik 

tenglama uchun Dirixle-Neyman masalasi. Центр научных публикаций (buxdu.Uz), 

18(18). 

23. Rasulov, R. X. R. (2022). Иккита перпендикуляр бузилиш чизиғига эга 

бўлган аралаш типдаги тенглама учун чегаравий масала ҳақида. Центр научных 

публикаций (buxdu.Uz), 22(22). 

24. Rasulov, R. X. R. (2022). Бузилиш чизиғига эга бўлган квазичизиқли 

аралаш типдаги тенглама учун Трикоми масаласига ўхшаш чегаравий масала 

ҳақида. Центр научных публикаций (buxdu.Uz), 18(18). 

25. Rasulov, X. (2022). Краевые задачи для квазилинейных уравнений 

смешанного типа с двумя линиями вырождения. Центр научных публикаций 

(buxdu.Uz), 8(8). 

26. Rasulov, X. (2022). Об одной краевой задаче для нелинейного 

уравнения эллиптического типа с двумя линиями вырождения. Центр научных 

публикаций (buxdu.Uz), 18(18). 

27. Rasulov, X. (2022). О динамике одной квадратичной динамической 

системы с непреривным временем. Центр научных публикаций (buxdu.Uz), 

18(18). 

28. Расулов Х.Р., Раупова М.Х. Роль математики в биологических науках // 

Проблемы педагогики, № 53:2 (2021), с. 7-10. 

29. Расулов Х.Р., Раупова М.Х. Математические модели и законы в 

биологии // Scientific progress, 2:2 (2021), р.870-879. 

30. Rasulov, R. X. R. (2022). Buzilish chizig’iga ega kvazichiziqli elliptik 

tenglama uchun Dirixle-Neyman masalasi. Центр научных публикаций (buxdu.Uz), 

18(18). 

"Science and Education" Scientific Journal / www.openscience.uz April 2024 / Volume 5 Issue 4

ISSN 2181-0842 / Impact Factor 4.182 242



31. Rasulov, R. X. R. (2022). Иккита перпендикуляр бузилиш чизиғига эга 

бўлган аралаш типдаги тенглама учун чегаравий масала ҳақида. Центр научных 

публикаций (buxdu.Uz), 22(22). 

32. Шукурова М.Ф., Раупова М.Х. Каср тартибли интегралларни 

ҳисоблашга доир методик тавсиялар // Science and Education, scientific journal, 

3:3 (2022), 65-76 b. 

 

"Science and Education" Scientific Journal / www.openscience.uz April 2024 / Volume 5 Issue 4

ISSN 2181-0842 / Impact Factor 4.182 243


