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Abstract: The article examines the initial problems that led to the creation of
dynamic systems. Numerical solutions are found for a time-continuous analogue of a
fixed non-Volterra quadratic stochastic operator with discrete time. Using the
MathCAD mathematical package, numerical solutions were determined for various
initial values and parameters, and graphs and phase trajectories of the solutions were
constructed. The advantages and disadvantages of the Runge-Kutte method used in
solving the problem are highlighted.
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Introduction. The development of living things manifests itself differently in
different processes. It is influenced by birth, growth, individuality, death of
individuals, external environment, and so on. Taking these circumstances into
account, a mathematical model of a biological population is constructed.

The number of the population changes and dynamics (population dynamics is a
change in its biological and group properties over time. The most important
characteristics for observing population dynamics are such characteristics as changes
in the number of individuals, their biomass, as well as changes in age and sex
structure) represents. Population dynamics is a branch of mathematical biology and is
a field that focuses on determining the state of a population in time. Because, if every
process is mathematically modeled, this modeling gives an opportunity to get
complete information about the studied process, makes it possible to draw
conclusions about the future situation.

The setting of mathematical problems for the study of biological processes
(population) dates back to ancient times. Indeed, it is important to study such issues
and draw conclusions.

The first research on the mathematical model of the biological population is
presented in the work of Leonardo Fibonacci, who lived in 1170-1240, «Treatise on
counting» («Liber abaci»).

This book, which is a collection of arithmetic and algebraic information, deals
with the following problem, which was widespread at that time and later throughout
Europe: «how many rabbits are born from a pair of rabbits in a year, if two months
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after the birth of a pair of rabbits, one rabbit is born from themy. The solution to this
problem consists of the following numbers:

1,1,2,3,5,8,13, 21, 34, 55, 89, 144, 233, 377, ...

These numbers went down in history as Fibonacci numbers.

In real populations, reproduction and mortality rates vary among different
groups. For example, insects lay eggs and their enemies kill the larvae, in addition,
they are affected by environmental metabolic products, cannibalism and poisoning,
age stages and their intensity. In other words, population dynamics are mainly
affected by birth rate, mortality, and population growth rate: birth rate is the number
of new individuals appearing per unit of time as a result of reproduction; mortality -
the number of individuals who died in a population per unit of time; population
growth rate - change in population size per unit of time.

In turn, the analysis of the dynamics of the biological population is important
both theoretically and practically. Methods of controlling the reproduction of pest
insects (releasing sterile male insects, pheromone traps, etc.) are aimed at creating a
certain imbalance in the population structure, which slows down their reproduction
and leads to its destruction. These issues are one of the urgent issues of
epidemiology.

Quadratic stochastic operators are used to solve problems that arise in a
biological population. Quadratic operators attract the attention of specialists in
various fields of mathematics and its applications (see, for example, [1]-[2]). The
concept of a quadratic stochastic operator was first formulated in article [3]. In the
work of S. Ulam [4], the problem was posed of studying the behavior of trajectories
of quadratic stochastic operators. This problem is mainly solved for Volterra
operators (see [6]-[7]. But the class of non-Volterra operators has been little studied.
In this paper, we study one particular case of a continuous analogue of a quadratic
stochastic operator [8], which we will call strictly non-Volterra. Note that the class of
strictly non-Volterra operators is a subclass of non-Volterra operators. Since there is
no general theory studying such operators, it is natural to first study their subclasses.

The motivation for considering arbitrary quadratic operators can be found, for
example, in [5] and [9]. Consequently, each operator is an interesting example in the
theory of multidimensional, nonlinear dynamic systems, with diverse behavior of
trajectories.

These models, built on the basis of the system of ordinary differential equations,
do not give positive results (since the reproduction process is discrete) in expressing
the dynamics of seasonal reproduction of many other species.

Mathematical models of these types of processes, represented by a system of
simple differential equations with momentum, are the most suitable models and
represent the studied process close to the real one. As we mentioned above, the
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mathematical model of the evolution of populations in biology is represented by
quadratic stochastic operators [3].

The problem of finding a limited distribution of individuals of different types
during the evolution of a biological system is equivalent to studying the asymptotic
properties of a quadratic stochastic operator. In addition, the number of simple and
non-standard problems and unsolved problems in the theory of quadratic stochastic
operators are of great interest from a mathematical point of view.

The non-linearity of operators, the presence of complex and difficult
calculations in the study of trajectories, the lack of widespread development of
methods for finding analytical solutions and the need to perform a large number of
calculations when studying quadratic operators did not generate interest in solving
these types of problems. However, as a result of the advent of computers, interest in
the problem of studying the state of the trajectories of quadratic stochastic operators
has been revived. Ulam and his colleagues did quite a bit of computing on learning
quadratic operators.

In [8], the discrete-time case of a strictly non-Volterra dynamical system is
studied. Thus, in this work the uniqueness of the fixed point is proved. This fixed
point has been proven to be non-attractive. A description of the w —limit set of a
trajectory for some subclasses of such operators is given. It is shown that, unlike
Volterra operators, strictly non-Volterra operators have cyclic trajectories. For two
specific operators, it is proved that there exists a cyclic trajectory with period 3, and
any trajectory starting on the boundary of a simplex converges to this cyclic
trajectory, and trajectories with an initial point (not fixed) lying inside the simplex
diverge; The w —limit set of such a trajectory is infinite and lies on the boundary of
the simplex. Subclasses of strictly non-Volterra operators are also studied, the
trajectories of which in the limit tend to a cyclic trajectory with period 2.

The main part. In this paper, a continuous-time analogue of a particular case of a
discrete-time non-Volterra discrete-time dynamical system studied in [8] a scientific
work is studied. The continuous-time analogue of the quadratic stochastic operator
studied in the scientific research of U.A. Rozikov and U.U. Jamilov (in general) has
the following form:

X, = axs+cxs + 2x,x3 — x; = f1(x1, %5, %3),
Xy = axZ4+dx2 + 2x;x3 — x, = f5(x1, %5, x3), (1)
X3 = bx{+Bx5 + 2x,%; — x3 = f3(x1, %3, X3)

or vector representation of this system

x(t) = f(x(£)), x(£) = (x,(), %2 (6), x5(¢)),
Fax®) = (A(x®), £x®), £(x©®)),
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where x(t) is the state of a biological system, t >0, x;(t) = 0,x,(t) =
0,x5(t) = 0.

We are following the parameters and the solution we are looking for in this
article

x1 () + x2(6) + x3(t) = 1,(2)
a,fB,a,b,c,d>0,=b=c+d=1(3)

we study the case that satisfies these conditions.

Main part. Search for fixed points of the system (1), numerical solutions, draw a
phase portrait, analyze the obtained results.

It should be said that the special discrete-time case of system (1) with a = 8 =
a=b=c=d=1/2 was studied in [10], and the continuous-time case was studied
in [11].

A system whose parameters (3) satisfy the condition (1) will be as follows:

Xy = Xx2/2 4 2x,%3 — X4,
Xy = x5/2 4 2x,%3 — x5, (4)
X3 = x2+x% + 2x,%5 — X3.

For convenience, we omit the arguments of the functions.

Definition. Points of the phase space satisfying f(x*(t)) = 0 are said to be
fixed points of system (1). Obviously, x*(t) —itself is a solution of equation (1),
because x*(t) = 0.

To find the fixed points of the system (4), If we use

X1 +x,+x3=1
we determine that the system (4) has the following fixed points [8]:
 (7-3V6)/2+4v5-8 . (3V5-7)/2+V5-1
e 2(4 —5) 2T 2(4 —5) ’
3-+5

xj = =—=—.(5)

That the system (4) has a unique fixed point M(x7, x5, x3) and the type of fixed
point is detailed in [8].

As can be seen from the system (4), the first fixed point of the system is
M,(0,0,0). This fixed point cannot be an equilibrium state for the system (4), that
satisfies the conditions of the problem under study. The fact that the point M,(0,0,0)
cannot be an equilibrium state for the system (4) satisfying the condition of the
problem is explained in detail in the article [12] in three different ways. Here is one
method: x; + x, + x3 = 0. Considering that x;,x,,x; are probabilities and x; >
0,x, = 0,x3 = 0 satisfy the inequality, the solution of the equation is x; = x, =

x3 = 0, which does not satisfy condition (2). Therefore, X = 0 cannot be a solution
to the main problem.
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We consider the Cauchy problem for system (1). Let it be, att = 0
x1(0) = x7, %, (0) = x7,x3(0) = x3 (6)
The initial conditions (x}, x5, x)T are taken from the values corresponding to
the columns of matrix B.

0.1 0.2 03302 044 023055 03 0.50.01
B = (0.3 04 0107 022 04044 03 04 0.08)
06 04 05701 034 037001 04 01091
in this B = (x,x2,x3)T. Numerical solutions of system (4) satisfying these
initial conditions were found using MathCAD mathematical package. Graphs are
presented in Figures 1-3.
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Charts 1-3 show graphs of numerical solutions of system (4) satisfying initial
conditions (6) through x; (t), x,(t), x3(t).
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Figure 4-5 shows the phase trajectories of numerical solutions
(1 (), x5 (£), x3(£)) and (t,x;(t),x,(t)) of the system (4) satisfying the initial
conditions (6) described.
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Figure 6 depicts the space-phase trajectory of numerical solutions
(t,, x,(t), x3(t)) of system (4) satisfying the initial conditions (6).

Note that in [13], to study system (4), the explicit Euler method was used to
numerically solve a system of ordinary differential equations (Cauchy problem). For
various values, numerical solutions (2) were obtained using C++ programming.

However, graphs of solutions and phase trajectories are not provided. In this
article, using the mathematical package MathCAD, numerical solutions of the system
were found. The fourth-order Runge-Kutte method was used to find numerical
solutions [14-32].

x3(7)
0.61

2 x(1)

Figure 6

Summary. Here, it should be said that, the explicit Runge-Kutte method was
used to solve the problem. Unfortunately, explicit Runge-Kutta methods are, as a
rule, unsuitable for solving rigid systems of equations due to the small region of their
absolute stability. The instability of explicit Runge-Kutta methods creates very
serious problems in the numerical solution of partial differential equations.

If we analyze the solutions, starting from t > 3, it is observed that the solutions
of the system (4), satisfying the initial conditions (5) tend to the fixed point. Here,
using the methods used in the preparation of the article and the results obtained in the
article [8], the following hypothesis can be stated.

Hypothesis. Some solutions of system (4) tend to the fixed point in (5) at
different initial values at t > 3.
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