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Abstract: The Drazin Inverse is a generalized form of inverse that shares similar 

properties with a square matrix; hence, the Drazin inverse is only defined for a square 

matrix. The Drazin inverse has numerous applications in solving singular differential 

equations, Markov chains, and iterative methods in numerical analysis. In the case 

where the system 𝐴𝑥 = 𝑏 involves a matrix 𝐴 that is invertible, if matrix 𝐴 is singular 

or non-invertible "Certainly! The corrected text is: "inverse, denote"e, the Drazin 

inverse is utilized to solve the system above. The research aim is to utilize the Drazin 

inverse in solving first-order singular linear differential equations. Let 𝑨 and 𝑩 be 

𝐧 × 𝐧 matrices, 𝒇 a vector-valued function. 𝑨 and 𝑩 may both be singular. The 

differential equation 𝑨𝒙’ +  𝑩𝒙 = 𝒇 is examined using the theory  of the Drazin 

inverse. 𝑨 closed form expression for all solutions of the differential equation is 

provided when the equation has unique solutions for consistent initial conditions. This 

is a review article and the results show that to solve single linear differential equations, 

the inverse of Drazin is the best possible way to solve this type of differential equations. 

Keywords: Drazine inverse, exponential matrix, generalized inverse, Linear 

equations 

 

INTRODUCTION 

The Drazin inverse was named by Michael P. Drazin. It is a generalized inverse 

that has the same properties as a matrix's normal inverse and is therefore defined only 

for a square matrix. 

The Durbin inverse has various applications in solving singular differential 

equations, Markov chains, and iterative methods in numerical analysis. 

Suppose we have the differential equation 𝑥′(𝑡) + 𝐴𝑥(𝑡) = 𝑓, where 𝑓 is a 

constant vector. If matrix A is not invertible, solving this system will encounter 

difficulties. Therefore, for solving this system, the Drazin inverse matrix of matrix A 

is utilized. In such cases, the significance of utilizing the Drazin inverse matrix is 

remarkably high. 
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In 1983, Cumblet, based on research conducted on singular differential equations, 

sought to find an explicit representation of the Durbin inverse for block matrices 

[
𝐴 𝐵
−𝐼 0

], where matrices 𝐸 and 𝐹 are square, and if 𝐴𝐵 = 𝐵𝐴 is satisfied. The solution 

to the singular differential equation 𝐴𝑥′𝑡+𝐵𝑥𝑡=0 can be obtained using this. 

Methods and Study Site: This article is a review study that was done by searching 

databases such as Google Scholar, web of Since, scopus and using the keywords Linear 

equations, generalized inverse, Drazine inverse and exponential matrix, the abstracts 

of 57 articles were studied, and only 11 The article related to the topic was selected 

and reviewed. 
Drazin reverse: Definition 1: Let A ∈ ℂn×n such that And(A) = 1. 𝐴 matrix X ∈

ℂn×n is said to be related to 𝐴 if it satisfies the following conditions: 

XAX = X, AX = XA, AkXA = Ak, k ≥ 0 (1) 

If these conditions hold, 𝑋 is called the Drazin inverse of 𝐴 and is denoted by AD. 

When 𝐴𝑛𝑑(𝐴) = 1, the Drazin inverse AD has an inverse concerning its length, known 

as the group inverse, denoted by A#. If 𝐴𝑛𝑑(𝐴) = 0, then the matrix 𝐴 is invertible, 

and its Drazin inverse is simply A−1. When A#exists, the following equations are 

satisfied [1]: 

AA#A = A, A#AA# = A# 𝑎𝑛𝑑 AA# = A#A.  
Some basic properties of Drazin inverses  

Suppose A ∈ ℂn×n and And(A) = k > 0. then[2]:  

1. For each real and positive number 𝐴𝑝+1𝐴𝐷 = 𝐴𝐷 

2. (𝐴𝑇)𝐷 = (𝐴𝐷)𝑇. 

3. (𝐴𝐷)𝐷 = 𝐴 ⟺ 𝐼𝑛𝑑(𝐴) ≤ 1 

Theorem 1: Let A ∈ ℂn×nand And (A) = k > 0. then, there exists an invertible 

matrix P such that 

A = P [
C 0
0 N

] P−1. 

where ∁ is an invertible matrix with rank(∁) = rank(Ak) and N is a nilpotent 

matrix of order 𝑘 [3] 

Theorem 2 Suppose ∁, P and N are matrices that apply to the conditions of 

Theorem1,[3]. then 

AD = P [C
−1 0
0 0

] P−1 (2) 

the exponential matrix in solving linear differential equations: The exponential 

matrix method is a useful technique for solving systems of linear differential equations. 

To apply this method, we start with a system of differential equations which can be 

written in matrix form as[4]: 
x′(t) = Ax(t) 
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The general solution to this system is given by: 

x(t) = etAC. 

In this expression the above relation, ∁= (c1, c2, c3, … , cn)
T is a vector containing 

𝑛 components. For an initial value problem, the components of 𝐶 are determined by 

the initial conditions. Thus, the solution can be written as: 

𝑥(t) = etAx0 x0 = X(t = t0). 

Example 1: Using the exponential matrix method, we want to solve the following 

system of equations[4]. 

{

dx

dt
= 4x

dy

dt
= x + 4y

 

The characteristic equation of the above system and its eigenvalues are equal to:  

det(A − λI) = |
4 − λ 0

1 4 − λ
| = 0 

Therefore, only one repeated eigenvalue was found for this system(4λ, 4), the 

eigenvector V1 = (v11, v21)
Tis equal to  

|
4 − 4 0

1 4 − 4
| [

v11

v21
] = 0,⟹ [

0 0
1 0

] [
v11

v21
] = 0,⟹ 1 ∙ v11 + 0 ∙ v21 = 0 

The above equation tells us that v21 is equal to zero, on the other hand, the value 

of v21 can be any arbitrary number and finally the special vector v1 is equal to: 

 v1 = (0,1)T 

The second independent vector which is considered as V2 = (v12, v22)
T is also 

obtained by using the equations mentioned below. 

(A − λI)v2 = v1,⟹ [
0 0
1 0

] [
v12

v22
] = [

0
1
] ,⟹ {

0 ∙ v12 + 0 ∙ v22 = 0
1 ∙ v12 + 0 ∙ v22 = 1

, 

In the above equation, the value of v22 can be any number. Finally, for the sake 

of simplicity, the following values are considered:  

v22 = 0, v11 = 0 

 Therefore, finally, the vector v2 is equal to : 

v2 = (1,0)T 

Now using the base vector, the matrix H will be equal to: 

H = [
0 1
1 0

] 

Also, the H−1 inverse vector is equal to : 

∆(H) = |
0 1
1 0

| = −1, H−1 =
1

∆(H)
[
H11 H12

H21 H22
]
T

 

In this matrix, the Hij values are the cofactors of the H matrix. After calculating 

the H matrix, it is equal to: 
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H−1 =
1

−1
[

0 1
−1 0

]
T

= (−1) [
0 −1

−1 0
] = [

0 1
1 0

] 

In some interesting occasions, two functions H and H−1 are equal to each other, 

this happens when the second power of a matrix is equal to : 

H2 = [
0 1
1 0

]
2

= [
0 1
1 0

] [
0 1
1 0

] = [
1 0
0 1

] = I. 

Jordan’s form or J corresponding to matrix A is also equal to: 

J = H−1AH = [
0 1
1 0

] [
4 0
1 4

] [
0 1
1 0

] = [
1 4
4 0

] [
0 1
1 0

] = [
4 1
0 4

] 

By obtaining the Jordan form, the transformation matrix will also be equal to : 

etj = [e
4t te4t

0 e4t ] = e4t [
1 t
0 1

] 

As a result, the exponential matrix is equal to : 

etA = HetjH−1 = e4t [
0 1
1 0

] [
1 t
0 1

] [
0 1
1 0

] = e4t [
0 1
1 t

] [
0 1
1 0

] = e4t [
1 0
t 1

] 

Therefore, finally, the general answer of the system is equal to[5] : 

X(t) = [
x
y] = etAC = e4t [

1 0
t 1

] [
C1

C2
] 

First-order linear singular differential equations 

1. We consider the first-order linear differential equation as follows[3] 
x′(t) + Ax(t) = f (3) 

With 𝑓 is a constant vector. The general solution of equation (3) is : 

x(t) = [e−At ∫ eAt

t

a

dt] f (4) 

With a ∈ ℝ let 𝐴 is non-singular then 

∫eAt dt = A−1eAt + G,G ∈ ℝn×n 

If 𝐴 singular then the problem becomes somewhat complex, it can use the 

following theorem with the help of the Drazin inverse to solve the problem. 

Theorem 3: if A ∈ ℝn×n, 𝐼𝑛𝑑(𝐴) = 𝑘 then[6]  :   

∫eAt dt = ADeAt + (I − AAD)t [I +
At

2!
+

A2t2

3!
+ ⋯+

Ak−1tk−1

k!
] + G, G ∈ ℝn×n (5) 

Example 2: let x′(t) + Ax(t) = f with 

A = [
1 1
1 1

] , AD = [

1

4

1

4
1

4

1

4

] , f = [
1
1
] 

Considering that 𝐼𝑛𝑑(𝐴) = 1 the solution of the equation is as follows : 

"Science and Education" Scientific Journal / www.openscience.uz September 2024 / Volume 5 Issue 9

ISSN 2181-0842 / Impact Factor 4.182 10



x(t) = [

1

2
1

2

] + [

t

2

t

2
t

2

t

2

] [

1

2
−

1

2

−
1

2

1

2

] [
1
1
] = [

1

2
1

2

]. 

2. Study of the Differential Equation 𝐴𝑥′ +  𝐵𝑥 = 𝑓 When 𝐴𝐵 =  𝐵𝐴 

This section begins the examination of the differential equation 

Ax’ +  Bxf (6) 

when 𝐴 and 𝐵 commute(𝐵 = 𝐵𝐴). If 𝐴 is nonsingular, equation (6) can be 

expressed in a form similar to (3). We consider cases where both 𝐴 and 𝐵 may be 

singular[6]. While methods for solving (6) are well-established, such as those described 

by Gantmacher[6], our approach aims to provide closed-form solutions without relying 

on elementary divisors or the canonical form for a pencil. Additionally, we avoid 

introducing solutions for auxiliary equations that do not satisfy the original equation, a 

common issue when using inverses other than the Drazin inverse. 

The associated homogeneous equation is: 

Ax’ +  Bx =  0 (7) 

We assume that 𝐴 and 𝐵 commute in this section. It will be shown that if 

consistent initial conditions uniquely determine solutions, equation (6) can be reduced 

to a case where 𝐴 and 𝐵 commute. 

Let 𝑥1 = 𝐴𝐷𝐴𝑥 and and 𝑥2 = (𝐼 − 𝐴𝐷𝐴)𝑥. Then equation (6) transforms into: 

(𝐶 +  𝑁)(𝑥′
1  +  𝑥′

2) +  𝐵(𝑥1  +  𝑥1) = 𝑓. 

 By Multiplying first by 𝐶𝐷𝐶 and then by(𝐼 − 𝐶𝐷𝐶), we get that (7) is equivalent 

to  

𝐶𝑥′1 + 𝐵𝑥′1 = 𝑓1 (8) 

 and 

𝑁𝑥′2 + 𝐵𝑥2 = 𝑓2 (9) 

Where 𝑓1 = 𝐶𝐷𝐶𝑓 𝑎𝑛𝑑 𝑓1 = (𝐼 − 𝐶𝐷𝐶)𝑓. The Equation 𝐶𝑥′1 + 𝐵𝑥′1 = 𝑓1 can be 

rewritten as  

 𝑥′1 + 𝐶𝐷𝐵𝑥1 = 𝐶𝐷𝑓, (10) 

which matches the form of (3) Hence, this equation has a unique solution for all 

initial conditions in ℝ(𝐴𝐷𝐴). However, equation (9) may or may not have nontrivial 

solutions, and these solutions, if they exist, are not necessarily uniquely determined 

by initial conditions. Before providing an example, we will draw some conclusions 

from the equation (10). 

Theorem 4. Suppose that A and B commute. Then 𝑦 = 𝑒−𝐴𝐷𝐵𝑡𝐴𝐴𝐷𝑞 is a solution 

to the differential equation  𝐴𝑥’ +  𝐵𝑥 = 0 for every column vector q. 

Corollary1. If 𝐴 and 𝐵 commute and 𝐴𝐷𝐴𝑓 = 𝑓, then 𝑦 = 𝑒−𝐴𝐷𝐵𝑡 ∫ 𝑒𝐴𝐷𝐵𝑡𝑓(𝑡)𝑑𝑡 

is a particular solution of 𝐴𝑥’ +  𝐵𝑥 = 𝑓.  
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It is worth noting that in Theorem 4 and Corollary 1, the assumption that A and 

B commute can be replaced by the weaker assumption that 𝐴𝐷𝐴 and B commute. 

Details of this can be found in the literature for those interested. 

Now let us consider a special case of (7). Since it is typically the nilpotent parts 

that cause difficulties, we will take A and B to be nilpotent[3]. 

Example 3. Consider the matrices : 

𝐴 = [
0 1 0
0 0 0
0 0 0

], 𝐵 = [
0 1 1
0 0 0
0 0 0

] 

In this case, the equation (7) can be written as : 

[
0 1 0
0 0 0
0 0 0

] [

𝑥′1
𝑥′2
𝑥′3

] + [
0 1 1
0 0 0
0 0 0

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0
] 

Which simplifies to 𝑥′2 + 𝑥2 + 𝑥3 = 0. In this case, 𝑥1 and 𝑥2 can be arbitrary, 

even if initial conditions are imposed. Note that 𝐴𝐵 = 𝐵𝐴. The following lemma will 

be fundamental for the subsequent discussions. 

Lemma1. Suppose that  matrices  𝐴 and 𝐵 commute (𝐴𝐵 =  𝐵𝐴) and the 

intersection of the null spaces of 𝐴 and 𝐵 contains only the zero vector. Then the 

following holds: 

The expression(𝐼 − 𝐴𝐷𝐴)𝐵𝐵𝐷 is equal to  (𝐼 − 𝐴𝐷𝐴) 

Theorem 5: Assume that matrices 𝐴 and 𝐵 commute with each other, and the 

intersection of their null spaces contains only the zero vector. Then, the general 

solution to the differential equation 

𝐴𝑥’ +  𝐵𝑥 = 0 is given by: 

𝑥 = 𝑒−𝐴𝐷𝐵𝑡𝐴𝐴𝐷𝑞 

where 𝑞 is an arbitrary vector in ℂ𝑛. 

Example 4. Consider the system 𝐴𝑥’ +  𝐵𝑥 =  0, where 

𝐴 = [
0 1
1 0

]  𝑎𝑛𝑑 𝐵 = [
1 0
0 1

] 

Since 𝐴𝐷 = 0 and the intersection of the null spaces of 𝐴 and 𝐵 is only the zero 

vector 𝑁(𝐴)⋂𝑁(𝐵) = 0, Theorem 5 tells us that the system has only the trivial 

solution[3]. Let 

𝐸 = [
0 1
0 0

], 

Then E is a (1,2)-inverse of 𝐴. the expression𝑒−𝐸𝐵𝑡𝐸𝐴𝑞 = 𝑒−𝐸𝑡𝐸𝐴𝑞 is not 

identically zero for all 𝑞, so it does not provide a solution to 𝐴𝑥’ +  𝐵𝑥 = 0. 

We now provide a particular solution to the equation 𝐴𝑥’ +  𝐵𝑥 = 0when 𝐴 and 

𝐵 commute and the intersection of their null spaces is the zero vector. 

As usual, 𝑓(𝑛) =
𝑑𝑛𝑓

𝑑𝑡𝑛  denotes the n-th derivative of 𝑓 with respect to t. 
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Theorem 6. Suppose that matrices A and B commute(AB = BA) and the 

intersection of their null spaces is the zero vector  𝑁(𝐴)⋂𝑁(𝐵) = {0}. Let Ind(A) = k 

If  f is a vector-valued function that is continuously differentiable k times, then the non-

homogeneous linear differential equation : 

𝐴𝑥’ +  𝐵𝑥 = 𝑓 (6) 
is consistent. A particular solution to this equation is given by: 

𝑥 = 𝑒−𝐴𝐷𝐵𝑡 ∫ 𝑒𝐴𝐷𝐵𝑠𝑓(𝑠)𝑑𝑠 + (𝐼 − 𝐴𝐴𝐷) ∑(−1)𝑛(𝐴𝐵𝐷)𝑛𝐵𝐷𝑓(𝑛) (11)

𝑘−1

𝑛=0

𝑡

𝑎

 

Where a is an arbitrary constant . 

Theorem 7. Suppose that matrices A and B commute(AB = BA) and the 

intersection of their null spaces is the zero vector (N(A)⋂N(B) = {0}). Then the 

general solution to the non-homogeneous differential equation : 

𝐴𝑥’ +  𝐵𝑥 = 𝑓 (6) 
is given by: 

𝑥 = 𝑒−𝐴𝐷𝐵𝑡𝐴𝐷𝑞

+ 𝐴𝐷𝑒−𝐴𝐷𝐵𝑡 ∫ 𝑒𝐴𝐷𝐵𝑠𝑓(𝑠)𝑑𝑠 + (𝐼
𝑡

𝑎

− 𝐴𝐴𝐷) ∑(−1)𝑛(𝐴𝐵𝐷)𝑛𝐵𝐷𝑓(𝑛) (12)

𝑘−1

𝑛=0

 

where q is an arbitrary constant vector, 𝐼𝑛𝑑 (𝐴) = 𝑘 and a is an arbitrary constant. 

As an immediate corollary of Theorem 7, we obtain a characterization of 

consistent initial conditions when 𝐴𝐵 = 𝐵𝐴 and 𝑁(𝐴)⋂𝑁(𝐵) = {0}. 

Corollary 2. Suppose that matrices A and B commute (AB =  BA) and the 

intersection of their null spaces is only the zero vector (N(A)⋂N(B) = {0}). Then there 

exists a solution to the differential equation 𝑡𝑜 𝐴𝑥’ +  𝐵𝑥 = 𝑓 with the initial condition 

𝑥(0) =  𝑥0 if and only if 𝑥(0) =  𝑥0 is of the form: 

𝑥0 = 𝐴𝐷𝑞 + (𝐼 − 𝐴𝐴𝐷) ∑(−1)𝑛(𝐴𝐵𝐷)𝑛𝐵𝐷𝑓(𝑛)(0)

𝑘−1

𝑛=0

 

for some vector 𝑞. Furthermore, the solution is unique. Specifically, if𝑓 is 

identically zero, then the condition 𝐴𝐷𝐴𝑥0 = 𝑥0  characterizes consistent initial 

conditions. Corollary 2 can be used for initial conditions at nonzero values by 

performing a change of variables. Note that if 𝐵 is invertible in the given equation, then 

Theorem 7 can be applied to the transformed equation 𝐵−1𝐴𝑥′ + 𝑥 = 𝐵−1𝑓, and the 

techniques from the next section are not necessary. 

4. The equation 𝐴𝑥’ +  𝐵𝑥 = 𝑓. In this section, we will determine the necessary 

and sufficient conditions for ensuring the uniqueness of solutions to the equation 𝐴𝑥’ +
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 𝐵𝑥 = 𝑓 We will then use Theorem 7 to find the general solution in cases where a 

unique solution exists. The forthcoming lemma will be crucial for the following 

discussions. 
Lemma 2. Suppose that c is such that (𝑐𝐴 +  𝐵) is invertible. Then the matrices 

(𝑐𝐴 + 𝐵)−1𝐴 and (𝑐𝐴 + 𝐵)−1𝐵 commute with each other. 

Theorem 8. The equation 𝐴𝑥’ +  𝐵𝑥 = 0 has unique solutions for consistent 

initial conditions if and only if there exists a scalar 𝑐 such that the matrix (𝑐𝐴 +  𝐵)is 

invertible. 

It is important to note that if 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices, then the determinant 

(𝜆𝐴 +  𝐵) is a polynomial of degree at most n. Therefore, either (𝑐𝐴 +  𝐵) is 

invertible for all but a finite number of values of 𝑐, or (𝑐𝐴 +  𝐵) is never invertible. 

Finding a value of 𝐶 such that(𝑐𝐴 +  𝐵)is invertible involves identifying a number 

that is not a root of a specific polynomial. This is generally considered simpler than 

finding the roots themselves. To simplify the formulas in the remainder of this section, 

we will introduce the following notation. Let 

�̂�𝐶 = (𝑐𝐴 + 𝐵)−1𝐴, �̂�𝐶 = (𝑐𝐴 + 𝐵)−1𝐵, 𝑓𝐶 = (𝑐𝐴 + 𝐵)−1𝑓 (13) 

where 𝐴 and 𝐵 are 𝑛 × 𝑛 matrices, 𝑓 is a vector-valued function, and c𝑐 is such 

that (𝑐𝐴 +  𝐵) is invertible. If the matrices �̂�𝐶 , �̂�𝐶  , and 𝑓𝐶  are used in a formula and 

the result is independent of the choice of 𝑐, we will omit the subscript. 

Using Theorems 5, 6, 7, 8, and Lemma 2, we can now derive our most significant 

results. 

Theorem 9. Suppose that the differential equation 𝐴𝑥’ +  𝐵𝑥 = 0 has unique 

solutions for consistent initial conditions. Let 𝑐 be a number such that (𝑐𝐴 +  𝐵) is 

invertible. Define �̂�, �̂� 𝑎𝑛𝑑 𝑓 according to equation (13). Assume 𝐼𝑛𝑑(�̂�) = 𝑘 Then 

the non-homogeneous equation 𝐴𝑥’ + 𝐵𝑥 = 𝑓 with initial condition 𝑥(0) = 𝑥0  has a 

solution if and only if 𝑥0 is of the form: 

𝑥0 = �̂��̂�𝐷𝑞 + (𝐼 − �̂��̂�𝐷) ∑(−1)𝑛(�̂��̂�𝐷)
𝑛
�̂�𝐷𝑓(𝑛)(0)

𝑘−1

𝑛=0

 (14) 

for some vector 𝑞. A particular solution to 𝐴𝑥’ +  𝐵𝑥 = 𝑓 is given by 

𝑥 = �̂�𝐷𝑒−𝐴𝐷�̂�𝑡 ∫ 𝑒𝐴𝐷�̂�𝑠𝑓(𝑠)𝑑𝑠 + (𝐼 − �̂��̂�𝐷) ∑(−1)𝑛(�̂��̂�𝐷)𝑛�̂�𝐷𝑓(𝑛) (15)

𝑘−1

𝑛=0

𝑡

𝑎

 

where 𝑎 is arbitrary. The general solution of 𝐴𝑥’ +  𝐵𝑥 = 𝑓 is 
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𝑥 = 𝑒−𝐴𝐷�̂�𝑡�̂��̂�𝐷𝑞

+ �̂�𝐷𝑒−𝐴𝐷�̂�𝑡 ∫ 𝑒𝐴𝐷�̂�𝑠𝑓(𝑠)𝑑𝑠 + (𝐼
𝑡

𝑎

− �̂��̂�𝐷) ∑(−1)𝑛(�̂��̂�𝐷)𝑛�̂�𝐷𝑓(𝑛) (16)

𝑘−1

𝑛=0

 

The solution that satisfies 𝑥(0) = 𝑥0 is obtained by setting 𝑞 = 𝑥0 and 𝑎 = 0 in 

equation (16). 

It is important to note that equation (7) has unique solutions for consistent initial 

conditions if and only if it has unique analytic solutions for consistent initial 

conditions. Additionally, the expressions given in equations (14), (15), and (16) are 

independent of the parameter 𝑐. This fact is established by the next theorem. 

Theorem 10. Suppose that 𝐴 𝑎𝑛𝑑 𝐵 are 𝑛 x 𝑛 matrices and (𝑐𝐴 + 𝐵)−1 exists for 

some 𝑐. Then the matrices �̂�𝑐
𝐷�̂�𝑐 , �̂�𝑐

𝐷�̂�𝑐 , �̂�𝑐
𝐷(𝑐𝐴 + 𝐵)−1, �̂�𝑐

𝐷(𝑐𝐴 + 𝐵)−1, �̂�𝑐
𝐷�̂�𝑐and 

𝐼𝑛𝑑(�̂�𝑐) are independent of 𝑐. 

Note that �̂�𝑐
𝐷 is not typically independent of 𝑐. However, if there exists a 𝑐 such 

that (𝑐𝐴 +  𝐵) is invertible, then: 

lim
𝑐→∞

𝐴𝑐
𝐷

𝑐
= �̂��̂�𝐷 and lim

𝑐→∞
�̂�𝑐

𝐷 = �̂��̂�𝐷 (20) 

Whether (17) can be used to derive a formula for�̂��̂�𝐷and �̂��̂�𝐷 for that is 

independent of 𝑐 remains unknown.  

In conclusion, we note that 𝑁(𝐴)⋂𝑁(𝐵) = {0} is not sufficient to guarantee that 

(𝑐𝐴 +  𝐵) is invertible for some 𝑐. 

Example 4: Consider the matrices 

𝐴 = [
0 1 0
0 0 0
0 0 0

], 𝐵 = [
0 0 1
0 0 0
1 0 0

] 

In this case 𝑁(𝐴)⋂𝑁(𝐵) = {0}. but det (𝑐𝐴 +  𝐵) = 0 for all values of 𝑐.  

If there exists a value of𝑐 such that (𝑐𝐴 +  𝐵) is invertible, then the matrix-valued 

function (𝜆𝐴 +  𝐵) is referred to as a regular pencil. canonical form for regular pencils 

may be found[3]. Lemma 2 is a preliminary step in the development of such canonical 

forms.[7]. 

Greville in[8], demonstrated that the Drazin inverse of an 𝑛 ×  𝑛 matrix 𝐴 can be 

expressed as a polynomial in 𝐴, by the Cayley-Hamilton theorem, this polynomial can 

be assumed to have a degree of n or less. Greville also provided a sequential algorithm 

for computing the Drazin inverse in[9]. Additionally, Robert, in [10] developed a 

method specifically for calculating the Drazin inverse of matrices with index one, 𝑎 

case also discussed in [9]. 
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In this section, we shall calculate the Drazin inverse if the eigenvalues of the 

matrix 𝐴 are known.  

Suppose that 0 is an eigenvalue of 𝐴 with multiplicity𝑙, and the distinct nonzero 

eigenvalues of A are 𝜆𝑖 with multiplicity 𝑛𝑖  𝑓𝑜𝑟 𝑖 =  1,2, . . . , 𝑟. if 𝑚 = 𝑛1  +  𝑛2 +

⋯+ 𝑛𝑟  then 𝑚 + 𝑙 = 𝑛. Consider the following polynomial of degree 𝑛 − 1:  

𝑝(𝜆)= 𝜆𝑙(𝛼0 + 𝛼1𝜆 + ⋯+ 𝛼𝑚−1𝜆
𝑚−1) (18) 

The determine the coefficients of 𝑝(𝜆), solve the following m equations for the 

coefficients of 𝑝(𝜆): 

For 𝑖 = 1,2,3, … , 𝑟 

1

𝜆𝑖
= 𝑝(𝜆𝑖) 

−1

𝜆𝑖
2 = 𝑝

′(𝜆𝑖
⬚) (19)

 

⋮ 
(−1)𝑛𝑖−1(𝑛𝑖−1)!

(𝜆𝑖)
𝑛𝑖

= 𝑝(𝑛𝑖−1)(𝜆𝑖) 

It is straightforward to demonstrate that these equations (19) have a unique 

solution. Therefore, we obtain the following result. 

Theorem 11. if 𝑝(𝜆)is defined by (18) and satisfies the conditions given in 

equation (19), then 𝑝(𝐴) = 𝐴𝐷 

Example 5. Consider the matrix 

𝐴 = [

2  4
1  4

 
6 5
5 4

0 −1
−1 −2

−1 0
−3 −3

] 

The eigenvalues of 𝐴 are {0, 0, 1, }. According to Theorem 11, the Drazin inverse 

(𝐴𝐷) given by 

𝐴𝐷 = 𝐴2(𝛼0𝐼 + 𝛼1𝐴) 

where 𝛼0 and 𝛼1are solutions to the following system of equations: 

1 = 𝛼0 + 𝛼1 

−1 = 2𝛼0 + 3𝛼1 

Solving these equations yields𝛼0 = 4, 𝛼1 = −3 Thus, we have: 

𝐴𝐷 = 𝐴2(𝛼0𝐼 + 𝛼1𝐴) = [

3  −1
2  1

 
2 2
3 3

−1 0
−1 0

−1 −1
−1 −1

] 

It is well understood that computing the eigenvalues of a matrix can be 

challenging. The method proposed for computing the Drazin inverse 𝐴𝐷 is effective 

for manual calculations and theoretical analysis. However, for large-scale problems, it 

is more practical to use methods that do not rely on accurately determining all 
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eigenvalues. As discussed in [10], if the Jordan form of 𝐴 is known, then 𝐴𝐷can be 

computed directly from this form. There are established methods for numerically 

computing the Jordan normal form (and consequently the eigenvalues and/or the core-

nilpotent decomposition). For further information, see, [11]. 

Example 6. Consider the homogeneous differential equation 

𝐴𝑥′ + 𝐵𝑥 = 0 (20) 

where 

𝐴 = [
1 0 −2

−1 0 2
2 3 2

] , 𝐵 = [
0 1 2

−27 −22 −17
18 14 10

] (21) 

Note that 𝐴 and 𝐵 are singular matrices and do not commute. However, (𝐴 + 𝐵) 

is invertible. To simplify the problem, we choose 𝑐 and multiply the differential 

equation by(𝐴 + 𝐵)−1 on the left to obtain: 

�̂�𝑥′ + �̂�𝑥 = 0 

where 

�̂� =
1

3
[
−3 −5 −4
6 5 −2

−3 2 10
] , �̂� =

1

3
[

6 5 4
−6 2 2
3 −2 7

] (22)  

A unique solution can be guaranteed if and only if the initial vector 𝑥(0))meets 

the following condition : 
(I-�̂�𝐴 ̂𝐷)𝑥(0) = 0 (23) 

The eigenvalues of�̂� and �̂� are {0, 1, 3} and {0, 1, −2}, respectively. Using the 

method described in the previous section, the Drazin inverses �̂�𝐷and �̂�𝐷 can be 

computed as follows: 

�̂�𝐷 =
1

27
[
−27 −41 −28
54 77 46

−27 −34 −14
] , �̂�𝐷 =

1

12
[

24 19 14
−24 −16 −8
12 5 −2

]  

The calculation for Equation (23) can now be performed as follows : 

9𝑥1(0) + 7𝑥2(0) + 5𝑥3(0) = 5 (24) 

Given that the eigenvalues of −�̂�𝐷�̂� are found to  be 0, 0,
2

3
, computing the matrix 

exponential is straightforward. The resulting matrix exponential is: 

𝑥(𝑡) = 𝑒−𝐴𝐷�̂�𝑡𝑥(0) =
1

18

[
 
 
 
 18 1 − 𝑒

2
3𝑡 2(1 − 𝑒

2
3𝑡) 

0 26 − 8𝑒
2
3𝑡 16(1 − 𝑒

2
3𝑡)

0 13(𝑒
2
3𝑡 − 1) 26(𝑒

2
3𝑡 − 1)]

 
 
 
 

[

𝑥1(0)

𝑥2(0)

𝑥3(0)
] 

Where 𝑥1(0), 𝑥2(0), 𝑥3(0)satisfy (24). 

Now consider the nonhomogeneous equation 

𝐴𝑥′ + 𝐵𝑥′ = 𝑏 
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where 𝐴, 𝐵 are given by (21) and b is the constant vector 𝑏 = [1,2,0]𝑇. Again we 

multiply on the left by (𝐴 +  𝐵)−1to obtain �̂�𝑥′ + �̂�𝑥′ = �̂� where 𝐴, 𝐵 are given in 

(22) and:  

�̂� = (𝐴 +  𝐵)−1𝑏 =
1

9
[
−11
20

−10
] 

If the initial vector meets the requirement for the uniqueness (or existence) of 

solutions, then the solution can be determined using Theorem 9. In this particular 

scenario, since �̂� has an index of 1, we have: 

𝑥(𝑡) = 𝑒−𝐴𝐷�̂�𝑡�̂��̂�𝐷𝑞 + �̂�𝐷𝑒−𝐴𝐷�̂�𝑡 ∫ 𝑒𝐴𝐷�̂�𝑠�̂�𝑑𝑠 + (𝐼 − �̂��̂�𝐷)�̂�𝐷�̂� (25)
𝑡

𝑎

 

Setting 𝑡 = 0 gives 

(𝐼 − �̂��̂�𝐷)(𝑥(0) − �̂�𝐷�̂�) = 0 (26) 
As a necessary and sufficient condition for the existence of a solution with the 

initial value 𝑥(0). one computer Equation (26) to be: 
9𝑥1(0) + 7𝑥2(0) + 5𝑥3 + 1 = 0 (27) 

Since�̂� is a constant, the integral in Equation (25) can be evaluated using  Formula 

(5). Given that �̂�𝐷�̂�, �̂��̂� all have an index of 1, Formula (5) simplifies to: 

∫ 𝑒𝐴𝐷�̂�𝑠�̂�𝑑𝑠 = {�̂��̂�𝐷(𝑒𝐴𝐷�̂�𝑡 − 𝐼) + (𝐼 − �̂��̂�𝐷�̂��̂�𝐷)𝑡)}�̂� (28)
𝑡

𝑎

 

By substituting Equation (28) into Equation (25) and simplifying, we obtain the 

final solution as: 

𝑥(𝑡) = 𝑒−𝐴𝐷�̂�𝑡�̂�(𝑥(0) − �̂�𝐷�̂�) + �̂�𝐷�̂� + �̂�𝐷(𝐼 − �̂�𝐷�̂�)𝑡�̂� (29) 

Evaluating Equation (29) yields: 

𝑥1(𝑡) = −
1

18
𝑒

2
3𝑡(𝑥2(0) + 2𝑥3(0)) −

13

18
𝑥2(0) −

4

9
𝑥3(0) −

2

9
− 𝑡 

𝑥2(𝑡) = −
4

9
𝑒

2
3
𝑡(𝑥2(0) + 2𝑥3(0)) −

13

9
𝑥2(0) +

8

9
𝑥3(0) +

2

9
+ 2𝑡 

𝑥3(𝑡) =
13

18
𝑒

2
3𝑡(𝑥2(0) + 2𝑥3(0)) −

13

18
𝑥2(0) −

4

3
𝑥3(0) −

10

9
− 𝑡 

where 𝑥1(0)has been eliminated using Equation (27). 

Conclusion 

The research presented in this paper affirms the significance of the Drazin inverse 

as an essential mathematical tool for addressing the complexities associated with first-

order linear singular differential equations. Utilizing the Drazin inverse, alongside the 

exponential matrix method, offers a robust framework for solving equations that are 

intractable through conventional means due to the singularity of the coefficient matrix. 

This work not only consolidates an understanding of the Drazin inverse's application 

in differential equations but also extends the frontier of how singular systems can be 
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approached, potentially influencing future research directions in the field of applied 

mathematics and engineering. 
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