"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning
xususiyatlari va tavsiflari, ularning tuzilishi va tahlili

Gulbodom Oybek qizi Norqulova
BXU

Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlarda belgilangan
funksiyalarning tuzilishi, xususiyatlari va tavsiflarini chuqur tahlil qilish amalga
oshirilgan. Massiv funksiyalarining ichki mexanizmlari, ularning matematik asoslari,
algoritmik murakkabligi va amaliy dasturlashdagi qo‘llanilishi o‘rganilgan. Tadqiqot
davomida massiv funksiyalarining klassifikatsiyasi yaratilgan, har bir funktsiya
turining xususiyatlari batafsil tahlil qilingan va ularning samaradorligini oshirish
yo‘llari ko‘rsatilgan. Maqolada zamonaviy dasturlash tillarida (Python, Java, C++)
mavjud funksiyalarning qiyosiy tahlili berilgan hamda ta’lim jarayonida ushbu
mavzuni o‘qitishning didaktik asoslari ishlab chiqilgan. Tadqiqot natijalari dasturchilar
va o‘qituvchilar uchun amaliy qo‘llanma sifatida xizmat qiladi.

Kalit so‘zlar: massiv funksiyalari, funksiya tuzilishi, algoritmik tahlil, xotira
boshqgaruvi, funksiya murakkabligi, ma’lumotlar qayta ishlash, massiv operatsiyalari,
funksiyalar tasnifi, dasturlash kutubxonalari, kod optimallashuvi, funksional
dasturlash, massiv metodlari, hisoblash samaradorligi

Properties and characteristics of functions defined in
multidimensional arrays, their structure and analysis

Gulbodom Oybek qizi Norqulova
BIU

Abstract: This article provides an in-depth analysis of the structure, properties
and characteristics of functions defined in multidimensional arrays. The internal
mechanisms of array functions, their mathematical foundations, algorithmic
complexity and application in practical programming are studied. During the research,
a classification of array functions was created, the characteristics of each type of
function were analyzed in detail, and ways to increase their efficiency were shown.
The article provides a comparative analysis of functions available in modern
programming languages (Python, Java, C++) and develops didactic foundations for
teaching this topic in the educational process. The results of the research serve as a
practical guide for programmers and teachers.

ISSN 2181-0842 | IMPACT FACTOR 4.525 31 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Keywords: array functions, function structure, algorithmic analysis, memory
management, function complexity, data processing, array operations, function
classification, programming libraries, code optimization, functional programming,
array methods, computational efficiency

Kirish. Zamonaviy dasturlashda ko‘p o‘lchovli massivlar bilan ishlash
funksiyalari muhim ahamiyatga ega bo‘lib, ma’lumotlarni samarali qayta ishlash va
murakkab hisoblashlarni amalga oshirish imkonini beradi. Ko‘p o‘lchovli massivlar
uchun belgilangan funksiyalar dasturlash tillarining standart kutubxonalarida mavjud
bo‘lib, ular yillar davomida ishlab chiqgilgan va optimallashtirilgan. Funksiyalar
dasturlashning asosiy tushunchalari bo‘lib, kod takrorlanishini kamaytiradi, dastur
tuzilmasini yaxshilaydi va xatolarni kamaytirishga yordam beradi.

Ko‘p o‘lchovli massivlar kontekstida funksiyalar maxsus ahamiyat kasb etadi,
chunki ular murakkab ma’lumotlar strukturalari bilan ishlashni soddalashtiradi va
abstraktsiya darajasini oshiradi. Hozirgi kunda turli dasturlash paradigmalari mavjud
bo‘lib, ularning har biri massiv funksiyalarini o‘ziga xos tarzda amalga oshiradi.
Python tilida NumPy kutubxonasi, Java tilida Arrays sinfi, C++ tilida STL kutubxonasi
va MATLAB muhitida o‘rnatilgan funksiyalar keng qo‘llaniladi. Bu funksiyalarning
tuzilishi, ishlash mexanizmi va samaradorligi turlicha xususiyatlarga ega.

Massiv funksiyalari turli sohalarda qo‘llaniladi. Ilmiy hisoblashlarda chiziqli
algebra operatsiyalari, tasvirlarni qayta ishlashda piksellar bilan ishlash, ma’lumotlar
tahlilida statistik hisoblashlar, sun’iy intellektda neyron tarmogqlari uchun tensorli
operatsiyalar va boshqa ko‘plab sohalarda ushbu funksiyalar asosiy vosita hisoblanadi.
Dastur samaradorligi ko‘p jihatdan massiv funksiyalarining to‘g‘ri tanlanishi va
qo‘llanilishiga bog‘liq.

Ta’lim jarayonida talabalar ko‘pincha massiv funksiyalarini fagat qo‘llash
darajasida o‘rganadilar, lekin ularning ichki mexanizmlarini, matematik asoslarini va
optimallash usullarini yetarlicha tushunmaydilar. Bu esa murakkab dasturlarni ishlab
chiqishda va samaradorlik masalalarini hal qilishda qiyinchiliklarga olib keladi.
Funksiyalarning vaqt va xotira murakkabligini tushunish, to‘g‘ri algoritmni tanlash va
kodni optimallash muhim ko‘nikmalar hisoblanadi.

Ushbu tadqiqotning maqgsadi ko‘p o‘lchovli massivlarda belgilangan
funksiyalarning to‘liq tavsifini berish, ularning tuzilishini tahlil qilish, xususiyatlarini
sistemalashtirish va samaradorlikni oshirish usullarini ishlab chiqishdan iborat.
Tadqiqot ob’ekti sifatida turli dasturlash tillarida amalga oshirilgan massiv funksiyalari
va ularning taqqoslash tahlili tanlab olingan. Tadqiqot metodologiyasi nazariy tahlil,
algoritmik murakkablikni baholash va amaliy dasturlash tajribasini o‘z ichiga oladi.

Asosiy qism

Massiv funksiyalarining umumiy klassifikatsiyasi

ISSN 2181-0842 | IMPACT FACTOR 4.525 32 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Ko‘p o‘lchovli massivlar uchun belgilangan funksiyalarni tizimli tarzda o‘rganish
uchun ularni toifalarga ajratish zarur. Funksiyalarning klassifikatsiyasi ularning
vazifasi, ishlash mexanizmi va qo‘llanish sohasiga asoslangan.

Yaratish va initsializatsiya funksiyalari yangi massiv ob’ektlarini yaratish va
ularni boshlang‘ich gqiymatlar bilan to‘ldirish uchun xizmat qiladi. Bu funksiyalar
dasturning boshida yoki kerak bo‘lganda massivlarni tashkil etish imkonini beradi.
Kirish va o‘zgartirish funksiyalari massiv elementlariga murojaat qilish va ularni
o‘zgartirish uchun mo‘ljallangan bo‘lib, indekslash, slicing va elementlarni yangilash
operatsiyalarini o‘z ichiga oladi.

Matematik operatsiyalar funksiyalari arifmetik va algebraik amallarni bajaradi.
Bu guruhga elementma-element operatsiyalar, matritsalarni ko‘paytirish,
transpozitsiya va boshqa chiziqli algebra operatsiyalari kiradi. Qidiruv va filtratsiya
funksiyalari massivda ma’lum shartlarni qanoatlantiruvchi elementlarni topish
imkonini beradi. Agregatsiya funksiyalari massiv bo‘yicha statistik hisoblashlarni
amalga oshiradi va yig‘indi, o‘rtacha, maksimum, minimum kabi qiymatlarni
hisoblaydi.

Transformatsiya funksiyalari massiv tuzilmasini o‘zgartiradi va reshape,
transpose, flatten kabi operatsiyalarni bajaradi. Saralash va tartiblash funksiyalari
elementlarni ma’lum tartibda joylashtiradi. Mantiqiy operatsiyalar funksiyalari shartli
tekshirish va mantiqly amallarni bajaradi. Birlashtirish va bo‘lish funksiyalari
massivlarni birlashtirilsh yoki kichik qismlarga ajratish imkonini beradi.

Yaratish va initsializatsiya funksiyalarining tuzilishi va mexanizmi

Massiv yaratish funksiyalari dasturlashning asosiy operatsiyalari hisoblanib, ular
xotira bilan ishlash, ma’lumot turlarini aniglash va boshlang‘ich qiymatlarni berish
vazifalarini bajaradi.

Python tilida NumPy kutubxonasi massiv yaratish uchun keng imkoniyatlar
taqdim etadi. numpy.zeros funksiyasi nollar bilan to‘ldirilgan massiv yaratadi va shape,
dtype, order parametrlarini gabul giladi. numpy.ones funksiyasi birlar bilan to‘ldirilgan
massiv yaratadi. numpy.full funksiyasi berilgan qiymat bilan to‘ldirilgan massiv hosil
qiladi. numpy.empty funksiyasi initsializatsiyasiz massiv yaratadi va tezroq ishlaydi,
lekin xotira tozalanmagan bo‘ladi. numpy.eye funksiyasi birlik matritsasini yaratadi.
numpy.arange funksiyasi berilgan diapazon va qadam bilan massiv yaratadi.
numpy.linspace funksiyasi berilgan diapazonni teng qismlarga bo‘lib massiv yaratadi.

Massiv yaratish jarayoni bir necha bosqichlardan iborat. Birinchi bosqichda zarur
xotira hajmi hisoblanadi va bu hajm massiv o‘lchamlari va ma’lumot turi
ko‘paytmasiga teng. Xotira hajmi shape[0] x shape[1] x ... x shape[n] x dtype size
formulasi bilan aniglanadi. Ikkinchi bosqichda operatsion tizimdan xotira so‘raladi va
bu operatsiya ko‘pincha O(1) vaqt murakkabligiga ega, chunki faqat ko‘rsatgichlar
bilan ishlash amalga oshiriladi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 33 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Uchinchi bosqichda ajratilgan xotira boshlang‘ich qiymatlar bilan to‘ldiriladi.
zeros va ones funksiyalari uchun bu jarayon O(n) vaqt murakkabligiga ega, chunki
barcha elementlarni to‘ldirish kerak. empty funksiyasi uchun bu bosqich bajarilmaydi
va vaqt murakkabligi O(1) bo‘ladi. full funksiyasi berilgan qiymat bilan xotirani
to‘ldiradi va O(n) vaqt talab giladi. To‘rtinchi bosqichda massiv ob’ekti yaratiladi va
metama’lumotlar saglanadi. Metama’lumotlar o‘lchamlar, ma’lumot turi, xotira tartibi
va boshga xususiyatlarni 0‘z ichiga oladi.

Java tilida massiv yaratish jarayoni o0‘ziga xos xususiyatlarga ega. int[][] matrix =
new int[rows][cols] sintaksisi bilan ikki o‘lchovli massiv yaratiladi. Java da massiv
yaratilganda xotira avtomatik ravishda default qiymatlar bilan to‘ldiriladi. Ragamli
turlar uchun 0, boolean uchun false, ob’ektlar uchun null qiymatlari beriladi. Massiv
ob’ekti heap xotirada saqlanadi va garbage collection tizimiga avtomatik ro‘yxatdan
o‘tkaziladi.

C++ tilida massiv yaratish statik yoki dinamik bo‘lishi mumkin. Statik massivlar
int matrix[rows][cols] sintaksisi bilan yaratiladi va stack xotirada saqlanadi. Dinamik
massivlar new operatori yordamida yaratiladi va heap xotirada joylashadi. C++ da
qo‘lda xotirani tozalash delete operatori bilan amalga oshirilishi kerak. std::vector
konteyneridan foydalanganda avtomatik xotira boshqaruvi ta’minlanadi va bu
zamonaviy C++ dasturlashda tavsiya etiladigan yondashuv hisoblanadi.

Kirish va o‘zgartirish funksiyalarining tahlili

Massiv elementlariga murojaat qilish va ularni o‘zgartirish dasturlashning eng
asosly va tez-tez bajariladigan operatsiyalari hisoblanadi. Bu operatsiyalarning
samaradorligi butun dastur ishlashiga sezilarli ta’sir ko‘rsatadi.

Indekslash operatsiyalari har bir dasturlash tilida o‘ziga xos sintaksisga ega.
Python va NumPy da element = array[i, j] sintaksisi bilan ikki o‘lchovli massivning
elementiga murojaat qilinadi. Ketma-ket indekslash ham qo‘llanilishi mumkin:
element = array[i][j]. Qiymatni o‘zgartirish uchun array[i, j] = value sintaksisidan
foydalaniladi. Indekslash operatsiyasining ichki mexanizmi o‘lchamlar bo‘yicha offset
hisoblashga asoslangan. Offset qiymati 1 x cols + j formulasi bilan hisoblanadi.
Elementning xotiradagi manzili base address + offset x element size formulasi
yordamida aniqlanadi. Bu operatsiyaning vaqt murakkabligi O(1) bo‘lib, bu
massivlarning asosiy afzalliklaridan biridir.

Slicing yoki kesish operatsiyalari massivning bir qismini ajratib olish imkonini
beradi. Python va NumPy da subarray = array[start:end, start:end] sintaksisi bilan
subregio olinadi. Bitta qatorni olish uchun row = array[i, :] va bitta ustunni olish uchun
col = array[:, j] sintaksisidan foydalaniladi. Slicing operatsiyasi ikki xil tarzda amalga
oshirilishi mumkin. View usulida yangi massiv yaratilmaydi va faqat ko‘rsatgich
qaytariladi. Bu usulda xotira sarfi O(1) bo‘lib, yangi xotira ajratilmaydi. Vaqt

ISSN 2181-0842 | IMPACT FACTOR 4.525 34 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

murakkabligi ham O(1) bo‘lib, faqat metama’lumotlar yaratiladi. View da o‘zgartirish
asl massivga ta’sir qiladi.

Copy usulida yangi mustaqil massiv yaratiladi. Bu usulda xotira sarfi O(k) bo‘lib,
bu yerda k - ajratilgan elementlar soni. Vaqt murakkabligi O(k) bo‘lib, barcha
elementlar ko‘chiriladi. Copy da o‘zgartirish asl massivga ta’sir qilmaydi. NumPy da
default holatda view qaytariladi va bu xotira va vaqtni tejaydi. Agar yangi mustaqil
massiv kerak bo‘lsa, .copy() metodidan foydalanish kerak.

Fancy indexing yoki murakkab indekslash NumPy ning kuchli xususiyatlaridan
biridir. Boolean indekslash orqali filtered = array[array > 5] sintaksisi bilan shartga
mos keladigan elementlar tanlanadi. Massiv bilan indekslash orqali indices = [0, 2, 4]
va selected = array[indices] sintaksisi bilan kerakli indekslar tanlanadi. Ko‘p o‘lchovli
indekslash orqali rows = [0, 2], cols = [1, 3] va selected = array[rows, cols] sintaksisi
bilan murakkab tanlov amalga oshiriladi.

Fancy indexing mexanizmi bir necha bosqichlardan iborat. Birinchi bosqichda
indeks massivi yoki boolean massiv tahlil gilinadi. Ikkinchi bosqichda mos keladigan
elementlar aniglanadi. Uchinchi bosqichda yangi massiv yaratiladi va elementlar
ko‘chiriladi. Fancy indexing har doim copy yaratadi va vaqt murakkabligi O(n) bo‘lib,
bu yerda n - tanlangan elementlar soni.

Matematik operatsiyalar funksiyalarining tuzilishi

Matematik operatsiyalar massivlar bilan ishlashning markaziy qismi bo‘lib, ular
ilmiy hisoblashlar, ma’lumotlar tahlili va sun’iy intellekt sohalarida keng qo‘llaniladi.

Elementma-element operatsiyalar har bir elementga alohida qo‘llaniladi va
massivlarning bir xil o‘lchamga ega bo‘lishini talab giladi. C = A + B operatsiyasi ikki
massivni elementma-element qo‘shadi. C = A - B ayirish operatsiyasini bajaradi. C =
A * B elementma-element ko‘paytirishni amalga oshiradi. C = A / B bo‘lish
operatsiyasini bajaradi. C = A ** 2 darajaga ko‘tarish operatsiyasini amalga oshiradi.
Trigonometrik funksiyalar sin_array = np.sin(A), cos_array = np.cos(A), tan_array =
np.tan(A) sintaksislari bilan qo‘llaniladi. Eksponensial funksiyalar exp array =
np.exp(A), log_array = np.log(A) orqali ishlatiladi.

Broadcasting mexanizmi turli o‘lchamdagi massivlarni operatsiyalarda ishlatish
imkonini beradi. Broadcasting qoidalari quyidagicha: birinchi qoidada o‘lchamlar soni
tenglanadi va qisqa massivga 1 qo‘shiladi. Ikkinchi qoidada har bir o‘lcham bo‘yicha
tekshirish amalga oshiriladi va o‘lchamlar teng bo‘lishi yoki biri 1 ga teng bo‘lishi
kerak. Uchinchi qoidada natija o‘lchami maksimal qiymatlar bilan aniqlanadi.
Masalan, A.shape = (3, 4) va B.shape = (4,) bo‘lsa, B (1, 4) ga aylanadivaC=A + B
natijasida C.shape = (3, 4) bo‘ladi. Broadcasting algoritmi ikkita ichma-ich sikl
yordamida amalga oshiriladi va vaqt murakkabligi O(nxm) bo‘ladi.

Chiziqgli algebra operatsiyalari matritsalar bilan ishlashning asosiy vositalari
hisoblanadi. C = np.matmul(A, B) yoki C = A @ B sintaksisi bilan matritsalarni

ISSN 2181-0842 | IMPACT FACTOR 4.525 35 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

ko‘paytirish amalga oshiriladi. A T = np.transpose(A) yoki A T = A.T sintaksisi bilan
transpozitsiya bajariladi. det = np.linalg.det(A) determinantni hisoblaydi. A inv =
np.linalg.inv(A) teskari matritsani topadi. eigenvalues, eigenvectors = np.linalg.eig(A)
x0s giymatlar va xos vektorlarni hisoblaydi.

Matritsalarni ko*paytirish algoritmi uch siklli tuzilmaga ega. Standart algoritmda
Cl[1, j] = A[i, k] * B[k, j] operatsiyasi bajariladi va vaqt murakkabligi O(mxnxp)
bo‘ladi. Optimallashtirilgan algoritmlar mavjud bo‘lib, Strassen algoritmi O(n"2.807)
murakkablikka ega. Blok ko‘paytirish usulida matritsalar kichik bloklarga bo‘linadi va
kesh xotiridan samarali foydalaniladi. BLAS kutubxonasi optimallashtirilgan past
darajali funksiyalarni taqdim etadi va protsessor vektorlash imkoniyatlaridan
foydalanadi.

Qidiruv va filtratsiya funksiyalarining tahlili

Qidiruv va filtratsiya operatsiyalari massivdan kerakli ma’lumotlarni topish va
ajratib olish uchun muhim ahamiyatga ega. Bu operatsiyalar ma’lumotlar tahlili va
qayta ishlashda keng qo‘llaniladi.

Element qidirish funksiyalari turli usullarda amalga oshirilishi mumkin.
numpy.where funksiyasi shartga mos keladigan elementlarning indekslarini gaytaradi.
indices = np.where(A == value) sintaksisi qiymat bo‘yicha qidiradi. indices =
np.where(A > threshold) sintaksisi shart bo‘yicha qidiradi. Boolean indekslash orqali
filtered = A[A > threshold] sintaksisi shartga mos elementlarni ajratib oladi. first index
= np.argmax(A > threshold) birinchi mos keladigan elementning indeksini topadi.

Chizigli qidiruv algoritmi eng oddiy qidiruv usuli bo‘lib, barcha elementlarni
ketma-ket tekshiradi. Algoritmning vaqt murakkabligi O(mxn) bo‘lib, xotira
murakkabligi O(1) ga teng. Chizigli qidiruvning afzalligi - massivning tartiblangan
bo‘lishini talab qilmaydi. Kamchiligi - katta massivlarda sekin ishlaydi. Ikkilik qidiruv
tartiblangan massivlar uchun samaraliroq usul hisoblanadi. Algoritmning vaqt
murakkabligi O(m + n) bo‘lib, bu chiziqli qidiruvdan ancha tez.

Filtratsiya operatsiyalari ma’lum shartga mos keladigan elementlarni tanlash
jarayoni hisoblanadi. Oddiy filtratsiya result = A[A > 0] sintaksisi bilan musbat
elementlarni tanlaydi. Murakkab shartlar mantiqiy operatorlar bilan birlashtirilishi
mumkin. result = A[(A > 0) & (A < 10)] sintaksisi mantiqiy VA operatsiyasini
qo‘llaydi. result = A[(A < 0) | (A > 10)] sintaksisi mantiqly YOKI operatsiyasini
bajaradi. Funksiya orqali filtratsiya maxsus shartlar uchun ishlatilishi mumkin.

Filtratsiya mexanizmi uch bosqichdan iborat. Birinchi bosqichda boolean massiv
yaratiladi va vaqt murakkabligi O(n) bo‘ladi. Ikkinchi bosqichda True elementlar soni
sanab chiqiladi va bu ham O(n) vaqt talab giladi. Uchinchi bosqichda natija massivi
yaratiladi va shartga mos elementlar ko‘chiriladi, bu jarayon O(n) vaqtda amalga
oshiriladi. Umumiy vaqt murakkabligi O(n) bo‘ladi, bu filtratsiyani samarali operatsiya
qiladi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 36 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Transformatsiya funksiyalarining tuzilishi

Transformatsiya funksiyalari massiv shaklini va tuzilmasini o‘zgartirish uchun
mo‘ljallangan bo‘lib, ular ma’lumotlarni turli ko‘rinishlarda taqdim etish imkonini
beradi.

Reshape funksiyasi massiv shaklini o‘zgartiradi va B = A.reshape((new_shape))
sintaksisi bilan qo‘llaniladi. Avtomatik o‘lcham hisoblash B = A.reshape((3, -1))
sintaksisi orqali amalga oshiriladi va bu yerda -1 qiymati avtomatik hisoblanadi. Bir
o‘Ichovli qilish flat = A.flatten() sintaksisi bilan nusxa yaratadi yoki flat = A.ravel()
sintaksisi bilan view qaytaradi.

NumPy da reshape operatsiyasi ko‘pincha view qaytaradi va xotira
ko‘chirilmaydi. Jarayon quyidagi bosqichlardan iborat: birinchi bosqichda yangi
o‘lchamlar tekshiriladi va umumiy razmer bir xil bo‘lishi kerak. Ikkinchi bosqichda
yangi stride qiymatlari hisoblanadi. Stride - bu har bir o‘lcham bo‘yicha keyingi
elementga o‘tish uchun zarur baytlar soni. Uchinchi bosqichda yangi massiv ob’ekti
yaratiladi, lekin xotira bir xil qoladi. Bu jarayonning vaqt murakkabligi O(1) bo‘lib,
fagat metama’lumotlar o‘zgaradi. Xotira murakkabligi ham O(1) bo‘lib, yangi xotira
ajratilmaydi.

Transpose funksiyasi matritsani transpozitsiya qiladi. B = A.T yoki B =
np.transpose(A) sintaksislari ishlatiladi. Ko‘p o‘lchovli transpozitsiya uchun B =
np.transpose(A, axes=(2, 0, 1)) sintaksisi qo‘llaniladi va bu o‘qlarning tartibini
o‘zgartiradi. Samarali amalga oshirish view yaratadi va xotiradagi ma’lumotlar
o‘zgarmaydi. O‘lchamlar va stride’lar teskari tartibda qaytariladi. Vaqt murakkabligi
O(1) va xotira murakkabligi ham O(1) bo‘ladi, chunki faqat metama’lumotlar
o‘zgaradi. Agar nusxa kerak bo‘lsa, B = A.T.copy() sintaksisi ishlatiladi va bu holda
vaqt murakkabligi O(m*n) va xotira murakkabligi O(mx*n) bo‘ladi.

Concatenate funksiyasi massivlarni birlashtiradi. C = np.vstack([A, B]) vertikal
birlashtirish amalga oshiradi. C = np.hstack([A, B]) gorizontal birlashtiradi. C =
np.concatenate([A, B], axis=0) umumiy birlashtirish funksiyasi hisoblanadi.
Concatenate algoritmi to‘rt bosqichdan iborat: birinchi bosqichda o‘lchamlar mos
kelishini tekshirish, ikkinchi bosqichda natija massivi hajmini hisoblash, uchinchi
bosqichda yangi massiv yaratish va to‘rtinchi bosqichda ma’lumotlarni ketma-ket
ko‘chirish. Vaqt murakkabligi O(n) bo‘lib, bu yerda n - barcha elementlar soni. Xotira
murakkabligi O(n) bo‘lib, chunki yangi massiv yaratiladi.

Saralash funksiyalarining tahlili

Saralash funksiyalari ma’lumotlarni tartiblash va tashkil etish uchun juda muhim
bo‘lib, ular ko‘plab algoritmlarda asosiy operatsiya hisoblanadi.

NumPy da turli saralash funksiyalari mavjud. sorted array = np.sort(A,
axis=None) butun massivni saralaydi. sorted rows = np.sort(A, axis=1) har bir qatorni
alohida saralaydi. sorted cols = np.sort(A, axis=0) har bir ustunni saralaydi. indices =

ISSN 2181-0842 | IMPACT FACTOR 4.525 37 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

np.argsort(A) saralangan elementlarning asl indekslarini gaytaradi. A.sort() joyida
saralash amalga oshiradi va asl massivni o‘zgartiradi.

NumPy da uchta asosiy saralash algoritmi qo‘llaniladi. Quicksort default algoritm
bo‘lib, o‘rtacha holatda O(n log n) vaqtda ishlaydi, lekin eng yomon holatda O(n?) vaqt
talab qiladi. Xotira sarfi O(log n) bo‘lib, bu rekursiya steki uchun zarur. Quicksort
barqgaror emas, ya’ni teng elementlarning asl tartibi saglanmasligi mumkin. Mergesort
barqaror algoritm bo‘lib, har doim O(n log n) vaqtda ishlaydi. Xotira sarfi O(n) bo‘lib,
qo‘shimcha massiv talab gilinadi. Heapsort algoritmi ham har doim O(n log n) vaqtda
ishlaydi, xotira sarfi O(1) bo‘lib, joyida saralash amalga oshiriladi, lekin bargaror
emas.

Ko‘p o‘lchovli massivlarni saralash murakkab operatsiya bo‘lib, bir nechta
kalitlar bo‘yicha saralashni talab qilishi mumkin. numpy.lexsort funksiyasi
leksikografik saralashni amalga oshiradi. sorted indices = np.lexsort((A[:, 1], A[:, 0]))
sintaksisi birinchi ustun, keyin ikkinchi ustun bo‘yicha saralaydi. Maxsus kalit
funksiyasi bilan saralash uchun har bir gqatorga kalit funksiyasi qo‘llaniladi va natijalar
bo‘yicha saralash amalga oshiriladi.

Topk elementlarni topish ko*pincha to‘liq saralashdan samaraliroq. K ta eng katta
element topish uchun k_largest = np.partition(A, -k)[-k:] sintaksisi ishlatiladi. K ta eng
kichik element topish uchun k _smallest = np.partition(A, k)[:k] sintaksisi qo‘llaniladi.
Partition algoritmi Quickselect algoritmiga asoslangan bo‘lib, o‘rtacha holatda O(n)
vaqtda ishlaydi. Bu to‘liq saralashdan ancha tez, chunki barcha elementlarni tartiblash
shart emas.

Agregatsiya va statistik funksiyalar

Agregatsiya funksiyalari massiv bo‘yicha umumlashtiruvchi qiymatlarni
hisoblash uchun xizmat giladi va ma’lumotlar tahlilida muhim rol o‘ynaydi.

Asosly agregatsiya funksiyalari turli statistik ko‘rsatkichlarni hisoblaydi. total =
np.sum(A) barcha elementlarning yig‘indisini topadi. mean = np.mean(A) o‘rtacha
qiymatni hisoblaydi. median = np.median(A) medianani topadi. std = np.std(A)
standart og‘ishni hisoblaydi. var = np.var(A) dispersiyani topadi. minimum =
np.min(A) minimal elementni aniqlaydi. maximum = np.max(A) maksimal elementni
topadi. O‘q bo‘yicha agregatsiya ham mumkin: row sums = np.sum(A, axis=1) har bir
qator yig‘indisini hisoblaydi va col means = np.mean(A, axis=0) har bir ustun
o‘rtachasini topadi.

Agregatsiya funksiyalarining tuzilishi algoritmik murakkablikka bog‘liq. Bitta
o‘tishli algoritmlar sum, min, max kabi funksiyalar uchun qo‘llaniladi va bir marta
aylanish bilan hisoblanadi. Vaqt murakkabligi O(n) va xotira murakkabligi O(1)
bo‘ladi. Ikki o‘tishli algoritmlar dispersiya va standart og‘ish uchun ishlatiladi.
Birinchi o‘tishda o‘rtacha hisoblanadi, ikkinchi o‘tishda har bir elementdan
o‘rtachaning ayirmasi kvadrati yig‘iladi. Vaqt murakkabligi O(2n) = O(n) bo‘ladi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 38 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Welford algoritmi onlayn dispersiyani hisoblash uchun ishlatiladi va bir o‘tishda
dispersiyani hisoblashga imkon beradi. Algoritm har bir yangi element uchun o‘rtacha
va M2 qiymatlarini yangilaydi. Bu algoritm raqamli jihatdan barqaror bo‘lib, katta
sonlar bilan ishlashda xatoliklarni kamaytiradi. Vaqt murakkabligi O(n) va xotira
murakkabligi O(1) bo‘ladi, bu esa katta massivlar uchun juda samarali.

Mantiqiy operatsiyalar va taqqoslash funksiyalari

Mantiqiy operatsiyalar shartli tekshirish va mantiqiy amallarni bajarish uchun
mo‘ljallangan bo‘lib, ular ma’lumotlarni filtratsiya qilish va tahlil qgilishda keng
go‘llaniladi.

Element bo‘yicha mantiqiy operatsiyalar ikki yoki bir massiv ustida mantiqiy
amallarni bajaradi. result = np.logical and(A, B) mantiqiy VA operatsiyasini amalga
oshiradi. result = np.logical or(A, B) mantiqiy YOKI operatsiyasini bajaradi. result =
np.logical not(A) mantiqiy EMAS operatsiyasini qo‘llaydi. result = np.logical xor(A,
B) mantiqiy XOR operatsiyasini bajaradi.

Agregat mantiqiy operatsiyalar massiv bo‘yicha umumlashtiruvchi mantiqiy
qiymatlarni qaytaradi. all true = np.all(A > 0) barcha elementlar shartni
qanoatlantirishini tekshiradi. any true = np.any(A > 0) hech bo‘lma bitta element
shartni ganoatlantirishini tekshiradi. Bu funksiyalar mantiqiy qisqa tutashuvdan
foydalanadi va zarur bo‘lganda to‘xtaydi.

Taqqoslash funksiyalari massivlarni solishtirish uchun ishlatiladi. equal =
np.array _equal(A, B) ikki massivning mutlaq tengligini tekshiradi. close =
np.allclose(A, B, rtol=1e-5) yaqin qiymatlarni solishtiradi va bu suzuvchi nuqta sonlari
bilan ishlashda muhimdir. Elementma-element taqqoslash operatorlari >, <, ==, |=ham
qo‘llanilishi mumkin va boolean massiv qaytaradi.

Mantiqiy operatsiyalar mexanizmi bitwise operatsiyalar yordamida amalga
oshiriladi. Zamonaviy protsessorlar SIMD ko‘rsatmalarini qo‘llab-quvvatlaydi va bir
vaqtning o‘zida bir nechta mantiqiy operatsiyalarni bajarishi mumkin. Vektorizatsiya
orqali samaradorlik sezilarli darajada oshiriladi. Parallel bajarish imkoniyati mavjud
bo‘lib, vaqt murakkabligi O(n/p) bo‘ladi, bu yerda p - parallel ogimlar soni.

Maxsus funksiyalar va optimallashtirish usullari

NumPy kutubxonasi universal funksiyalar (ufunc) tushunchasini joriy qilgan
bo‘lib, bu elementma-element ishlash uchun maxsus optimallashtirilgan
funksiyalardir.

Universal funksiyalar bir nechta toifalarga bo‘linadi. Arifmetik ufunc’lar np.add,
np.subtract, np.multiply, np.divide operatsiyalarini o‘z ichiga oladi. Trigonometrik
ufunc’lar np.sin, np.cos, np.tan, np.arcsin, np.arccos, np.arctan funksiyalarini qamrab
oladi. Eksponensial ufunc’lar np.exp, np.log, np.logl0, np.power, np.sqrt
operatsiyalarini bajaradi. Taqqoslash ufunc’lari np.greater, np.less, np.equal,
np.not_equal funksiyalarini 0‘z ichiga oladi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 39 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Ufunc xususiyatlari ularni oddiy funksiyalardan ajratib turadi. Broadcasting
qobiliyati turli o‘lchamdagi massivlar bilan ishlash imkonini beradi. Type casting
avtomatik tur konvertatsiyasini ta’minlaydi. Vektorizatsiya SIMD ko‘rsatmalaridan
foydalanadi va bir nechta elementni bir vaqtning o‘zida qayta ishlaydi. Output parametr
natijani mavjud massivga yozish imkonini beradi va qo‘shimcha xotira ajratishni oldini
oladi.

Kodni optimallashtirish bir nechta strategiyalarni o‘z ichiga oladi. Vektorizatsiya
loop’larni NumPy funksiyalari bilan almashtirish orqali samaradorlikni oshiradi.
Xotira joylashuvi muhim bo‘lib, C-tartibli massivlarda qatorlar ketma-ket, Fortran-
tartibli massivlarda ustunlar ketma-ket joylashadi. Kesh xotiridan samarali foydalanish
uchun xotirada ketma-ket joylashgan elementlarga murojaat qilish kerak.

In-place operatsiyalar qo‘shimcha xotira ajratishni oldini oladi. Masalan, A +=B
operatsiyasi A = A + B operatsiyasidan samaraliroq, chunki yangi massiv yaratilmaydi.
View va copy o‘rtasidagi fargni tushunish muhim bo‘lib, view xotira tejaydi, copy esa
mustaqil massiv yaratadi. Parallel hisoblash katta massivlar uchun sezilarli
tezlashtirish beradi va NumPy ba’zi funksiyalarda avtomatik parallellashtirish
qo‘llaydi.

Xotira boshqaruvi va samaradorlik

Xotira boshqaruvi ko‘p o‘lchovli massivlar bilan samarali ishlashning muhim
jihati hisoblanadi.

NumPy massivlari xotirada uzluksiz blok sifatida saqlanadi. Bu kesh xotiridan
samarali foydalanish imkonini beradi. Stride tushunchasi har bir o‘lcham bo‘yicha
keyingi elementga o‘tish uchun zarur baytlar sonini bildiradi. C-tartibli saqlaShda
oxirgi o‘lcham eng tez o‘zgaradi va stride’lar chapdan o‘ngga ortadi. Fortran-tartibli
saqlashda birinchi o‘lcham eng tez o‘zgaradi va stride’lar o‘ngdan chapga ortadi.

View va copy mexanizmlari xotira samaradorligiga ta’sir qiladi. View asl massiv
bilan xotirani bo‘lishadi va yangi xotira ajratmaydi. Copy mustaqil massiv yaratadi va
asl massivdan ajralgan xotiraga ega. View yaratish operatsiyalari: slicing, transpose,
reshape (ko‘pincha). Copy yaratish operatsiyalari: fancy indexing, copy() metodi, ba’zi
arifmetik operatsiyalar.

Xotira tozalash Python da garbage collector tomonidan avtomatik amalga
oshiriladi. Massiv ob’ektiga hech qanday havola golmaganda, xotira avtomatik
bo‘shatiladi. Katta massivlar bilan ishlashda del operatoridan foydalanish xotirani
tezroq bo‘shatishga yordam beradi. C++ da esa qo‘lda xotirani tozalash delete operatori
bilan amalga oshirilishi kerak.

Xotira optimallashtirish strategiyalari bir nechta yo‘nalishlarni o‘z ichiga oladi.
Ma’lumot turini to‘g‘ri tanlash xotirani tejaydi, masalan, float32 o‘rniga floatl6
ishlatish xotirani ikki baravarga kamaytiradi. Siyrak matritsalar uchun maxsus
tuzilmalar (CSR, CSC formatlar) xotirani sezilarli darajada tejaydi. Xotira mapping

ISSN 2181-0842 | IMPACT FACTOR 4.525 40 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

katta fayllar bilan ishlashda foydalaniladigan texnika bo‘lib, butun faylni xotiraga
yuklamasdan ishlash imkonini beradi.

Didaktik yondashuv va o‘qitish metodikasi

Ko‘p o‘lchovli massiv funksiyalarini o‘qitishda samarali didaktik yondashuv
qo‘llash zarur.

Bosqichma-bosqich o‘qitish prinsipi muhim bo‘lib, oddiy tushunchalardan
murakkab tushunchalarga o‘tish kerak. Dastlab bir o‘lchovli massivlar va ularning
asosiy funksiyalari o‘rganiladi. Keyin ikki o‘lchovli matritsalar va ularga xos
funksiyalar o‘rgatiladi. Nihoyat, yuqori o‘Ichovli tensorlar va murakkab operatsiyalar
o‘zlashtiriladi. Har bir bosqichda talabalar oldingi bilimlarni mustahkamlashi va yangi
tushunchalarni organik ravishda qabul qilishi ta’minlanadi.

Vizualizatsiya talabalar uchun tushunishni osonlashtiradi. Ikki o‘lchovli
massivlarni jadval ko‘rinishida ko‘rsatish intuitsiyani rivojlantiradi. Grafiklar orqali
operatsiyalarni tasvirlash abstrakt tushunchalarni konkret qiladi. Uch o‘lchovli
massivlarni bo‘laklash (slicing) orqali ko‘rsatish murakkab strukturalarni tushunishga
yordam beradi. Zamonaviy vizualizatsiya vositalari (matplotlib, seaborn) dan
foydalanish tavsiya etiladi.

Amaliy mashqglar nazariy bilimlarni mustahkamlaydi. Oddiy masalalardan
boshlash va asta-sekin murakkablashtirish kerak. Hayotiy misollar bilan ishlash
(rasmlar, jadvallar, vaqt qatorlari) motivatsiyani oshiradi. Dasturlash tili va
kutubxonalaridan amaliy foydalanish ko‘nikmalarni rivojlantiradi. Talabalar o‘z
loyihalarini bajarishlari orqali mustagqil ishlash qobiliyati shakllanadi.

Xatolarni tahlil qilish va oldini olish muhim o‘quv jarayoni hisoblanadi.
Indeksdan chiqib ketish (Index out of bounds) eng tez-tez uchraydigan xato bo‘lib,
massiv chegaralarini doimo tekshirish kerakligi ta’kidlanadi. Noto‘g‘ri o‘lchamlar
bilan ishlash operatsiyalar bajarilishidan oldin o‘lchamlarni tasdiglashni talab qiladi.
Xotira to‘lib ketishi katta massivlar bilan ishlashda kuzatiladi va xotirani tejash usullari
o‘rgatiladi. View va copy farqini tushunmaslik asl ma’lumotlarni kutilmaganda
o‘zgartirish xatolariga olib keladi.

Turli dasturlash tillari va kutubxonalarda amalga oshirish

Har bir dasturlash tili va kutubxonasi massiv funksiyalarini o‘ziga xos tarzda
amalga oshiradi.

Python va NumPy yuqori darajadagi abstraktsiya va qulaylikni taqdim etadi.
Ko‘plab tayyor funksiyalar mavjud bo‘lib, ular yaxshi hujjatlashtirilgan. C va Fortran
bilan integratsiya tufayli yuqori samaradorlik ta’minlanadi. Interaktiv muhit (Jupyter)
tezkor prototiplash imkonini beradi. Kamchiliklari: interpretirlangan til bo‘lgani uchun
ba’zi operatsiyalar sekinroq bo‘lishi mumkin, GIL (Global Interpreter Lock) parallel
hisoblashni cheklaydi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 41 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

MATLAB matematik hisoblashlar uchun maxsus yaratilgan muhit hisoblanadi.
Matritsalar bilan ishlash juda qulay va tabily. Kuchli vizualizatsiya vositalari
o‘rnatilgan. Simulink bilan integratsiya tizimlarni modellashtirish imkonini beradi.
Kamchiliklari: litsenziya to‘lovi talab qilinadi, boshqa tillarga integratsiya murakkab,
umumiy magsadli dasturlash uchun kamroq mos.

Java ob’ektga yo‘naltirilgan paradigmani qo‘llaydi. Ko‘p o‘lchovli massivlar
massivlar massivi sifatida amalga oshiriladi. Qat’1y tip tekshiruvi xatoliklarni erta
aniqlashga yordam beradi. Platform mustaqilligi har ganday operatsion tizimda ishlash
imkonini beradi. Apache Commons Math va ND4J kutubxonalari qo‘shimcha
imkoniyatlar beradi. Kamchiliklari: sintaksis ko‘proq verboz, NumPy ga nisbatan
kamroq matematik funksiyalar.

C va C++ past darajali nazorat va maksimal samaradorlikni ta’minlaydi. Xotirani
qo‘lda boshgqarish to‘liq nazoratni beradi. SIMD ko‘rsatmalaridan bevosita foydalanish
mumkin. Eigen, Armadillo kutubxonalari yuqori darajadagi interfeys taqdim etadi.
Kamchiliklari: murakkablik va rivojlantirish vaqti ko‘proq, xotirani qo‘lda boshqgarish
xatolarga olib kelishi mumkin, portativlik muammolari bo‘lishi mumkin.

Amaliy qo‘llanmalar va dasturlash namunalari

Ko‘p o‘lchovli massiv funksiyalari turli sohalarda qo‘llaniladi va har bir sohada
o‘ziga xos talablar mavjud.

Ragamli tasvirlarni qayta ishlashda tasvirlar uch oflchovli massiv
[tinglikxkenglikx3] sifatida saqlanadi, bu yerda 3 - RGB kanallari. Filtrlash
operatsiyalari konvolyutsiya funksiyalari yordamida amalga oshiriladi. Tasvir
transformatsiyalari (aylanish, macmrabnamn) affin transformatsiya matritsalari orqali
bajariladi. Rangli modellar o‘rtasida konvertatsiya (RGB, HSV, YUV) matematik
formulalar yordamida amalga oshiriladi.

Ma’lumotlar tahlilida jadval ko‘rinishidagi ma’lumotlar ikki o‘lchovli massivda
saglanadi. Agregatsiya funksiyalari statistik ko‘rsatkichlarni hisoblaydi. Filtrlash va
saralash ma’lumotlarni tashkil etishga yordam beradi. Correlatsiya va regressiya tahlili
matritsali operatsiyalar orqali amalga oshiriladi. Pandas kutubxonasi NumPy ustiga
qurilgan bo‘lib, yuqori darajali ma’lumotlar bilan ishlash vositalarini taqdim etadi.

Sun’iy neyron tarmogqlarda og‘irliklar matritsalari va aktivatsiya tensorlari asosiy
tuzilmalar hisoblanadi. Forward propagation matritsalarni ko‘paytirish va aktivatsiya
funksiyalarini qo‘llashdan iborat. Backpropagation gradientlarni hisoblash uchun
zanjir qoidasini qo‘llaydi. Batch processing bir nechta namunalarni bir vaqtda qayta
ishlash orqali samaradorlikni oshiradi. TensorFlow va PyTorch kutubxonalari bu
operatsiyalarni avtomatlashtiradi va GPU da tezlashtiradi.

[Imiy hisoblashlarda chiziqli tenglamalar tizimini yechish matritsali usullar orqali
amalga oshiriladi. Diferensial tenglamalarni ragamli yechish diskretizatsiya va iterativ
usullarni talab giladi. Monte-Karlo simulatsiyalari tasodifiy massivlar bilan ishlashni

ISSN 2181-0842 | IMPACT FACTOR 4.525 42 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

o‘z ichiga oladi. Optimallashtirish masalalari gradientli usullar va matritsali
operatsiyalar yordamida yechiladi.

Kelajak yo‘nalishlari va rivojlanish istigbollari

Ko‘p o‘lchovli massiv funksiyalari sohasida doimiy rivojlanish kuzatilmoqda va
bir nechta istigbolli yo‘nalishlar mavjud.

GPU hisoblashlari massiv operatsiyalarini sezilarli tezlashtiradi. CUDA va
OpenCL platformalari parallel hisoblash imkoniyatlarini kengaytiradi. CuPy
kutubxonasi NumPy interfeysi bilan GPU da ishlaydi. Tensor o‘zaklar maxsus
tezlashtirish uchun mo‘ljallangan apparatlar. Kelajakda GPU hisoblashlari yanada
kengroq tarqalishi kutilmoqda.

Avtomatik differentsiatsiya zamonaviy chuqur o‘rganishning asosi hisoblanadi.
PyTorch va TensorFlow avtomatik gradientlarni hisoblaydi. Statik va dinamik
hisoblash graflari turli optimallash imkoniyatlarini beradi. Kelajakda avtomatik
differentsiatsiya yangi algoritmlar va ilovalar uchun standart vosita bo‘lishi mumkin.

Kvant hisoblash yangi paradigma bo‘lib, kvant massivlari va kvant algoritmlar
rivojlanmoqda. Kvant superpozitsiyasi parallel hisoblashni ta’minlaydi. Ba’zi
masalalar uchun eksponensial tezlashtirish mumkin. Hozircha dastlabki bosqichda
bo‘lsa-da, kelajakda katta ahamiyat kasb etishi kutilmoqda.

Distributed hisoblash katta haymdagi ma’lumotlar bilan ishlash uchun zarur. Dask
kutubxonasi NumPy interfeysi bilan parallel va tagsimlangan hisoblashni ta’minlaydi.
Apache Spark katta ma’lumotlar uchun tagsimlangan hisoblash platformasi. Kelajakda
tagsimlangan tizimlar yanada samarali va foydalanish uchun qulayroq bo‘lishi
kutilmoqda.

Xulosa. Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning xususiyatlari va
tavsiflari, ularning tuzilishi va tahlili tadqiqoti quyidagi muhim xulosalarga olib keldi.
Massiv funksiyalarining tizimli klassifikatsiyasi ularni o‘rganish va qo‘llashni
osonlashtiradi. Yaratish va initsializatsiya, kirish va o‘zgartirish, matematik
operatsiyalar, qidiruv va filtratsiya, agregatsiya, transformatsiya, saralash, mantiqiy
operatsiyalar va boshga toifalar aniq belgilandi. Har bir toifaning o‘ziga xos
xususiyatlari, qo‘llanish sohalari va samaradorlik xarakteristikalari aniglandi.

Funksiyalarning ichki mexanizmlari va algoritmik tuzilmasi chuqur o‘rganildi.
Xotira bilan ishlash prinsipi, stride va offset hisoblash, view va copy o‘rtasidagi farq,
broadcasting mexanizmi kabi muhim tushunchalar tahlil qilindi. Bu bilimlar samarali
va optimallashtirilgan kod yozish uchun zarur.

Vaqt va xotira murakkabligining baholash metodikasi ishlab chiqildi. Har bir
funksiya uchun Big-O notatsiyasida murakkablik ko‘rsatkichlari berildi. Oddiy
operatsiyalar O(1), chizigli operatsiyalar O(n), matritsali operatsiyalar O(n?) yoki O(n?)
murakkablikka ega ekanligi aniglandi. Bu bilimlar algoritmlarni tanlash va
optimallashtirish uchun muhim asos yaratadi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 43 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Turli dasturlash tillari va kutubxonalarida funksiyalarning qiyosiy tahlili amalga
oshirildi. Python/NumPy qulaylik va keng imkoniyatlar, MATLAB matematik
hisoblashlar, Java mustahkamlik va platformalar mustaqilligi, C/C++ maksimal
samaradorlik va nazorat tomonlari bilan ajralib turadi. Har bir muhit o‘z afzalliklari va
kamchiliklariga ega.

Optimallash strategiyalari va samaradorlikni oshirish usullari ishlab chiqildi.
Vektorizatsiya, parallellashtirish, kesh optimizatsiyasi, in-place operatsiyalar, to‘g‘ri
ma’lumot turini tanlash va xotirani tejash texnikalari tavsiya etildi. Bu usullar dastur
ishlashini sezilarli darajada yaxshilaydi.

Didaktik yondashuv va o‘qitish metodikasi ishlab chiqildi. Bosqichma-bosqich
o‘rganish, vizualizatsiya, amaliy mashqlar, xatolarni tahlil qilish va mustaqil loyihalar
bajarish o‘quv jarayonining samaradorligini oshiradi. Bu yondashuv talabalar uchun
murakkab mavzuni tushunarli va qiziqarli giladi.

Amaliy qo‘llanmalar va real hayotdagi misollar ko‘rsatildi. Tasvirlarni qayta
ishlash, ma’lumotlar tahlili, sun’iy intellekt, ilmiy hisoblashlar va boshqa sohalarda
massiv funksiyalari asosiy rol o‘ynaydi. Konkret dasturlash namunalari nazariy
bilimlarni amaliyotga tatbiq etish yo‘llarini ko‘rsatdi.

Kelajak istigbollari va rivojlanish yo‘nalishlari belgilandi. GPU hisoblashlari,
avtomatik differentsiatsiya, kvant hisoblash va tagsimlangan tizimlar sohasida katta
o‘zgarishlar kutilmoqda. Bu texnologiyalar massiv funksiyalarining qo‘llanilish
doirasini kengaytiradi va yangi imkoniyatlar ochadi.

Tadqiqot ko‘rsatdiki, ko‘p o‘lchovli massiv funksiyalarini to‘liq tushunish
nazariy bilim, algoritmik fikrlash va amaliy ko‘nikmalarni birlashtiradi. Bu bilimlar
asosida samarali, optimallashtirilgan va tushunarli kod yozish mumkin. Ta’lim
jarayonida ushbu tushunchalarni to‘g‘ri yetkazish kelajak dasturchilarni tayyorlashda
muhim ahamiyatga ega.

Foydalanilgan adabiyotlar

1. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Introduction to Algorithms,
3rd Edition. MIT Press, 2009. 1312 p.

2. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical
Recipes: The Art of Scientific Computing, 3rd Edition. Cambridge University Press,
2007. 1235 p.

3. Strang G. Introduction to Linear Algebra, 5Sth Edition. Wellesley-Cambridge
Press, 2016. 584 p.

4. Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press, 2016. 775
p.

5. Van Rossum G., Drake F.L. The Python Language Reference Manual. Network
Theory Ltd, 2011. 151 p.

ISSN 2181-0842 | IMPACT FACTOR 4.525 44 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

6. Harris C.R., Millman K.J., van der Walt S.J. et al. Array programming with
NumPy // Nature. 2020. Vol. 585. P. 357-362.

7. Golub G.H., Van Loan C.F. Matrix Computations, 4th Edition. Johns Hopkins
University Press, 2013. 756 p.

8. Trefethen L.N., Bau D. Numerical Linear Algebra. SIAM, 1997. 361 p.

9. McKinney W. Python for Data Analysis, 2nd Edition. O‘Reilly Media, 2017.
544 p.

10. Axo A., Xonkpodt JIx., Yieman k. CTpyKTypbl JaHHBIX U aJTOPUTMBbL. M.:
Bunssmc, 2000. 384 c.

11. Kayt . MckyccTBo nporpaMMupoBaHusi, ToM 1. OCHOBHBIE allrOPUTMBI. M..:
Bunesamc, 2006. 720 c.

12. Bupt H. Anroputwmsl u ctpyktypsl gansabix. CI16.: Hesckuit Jnanekt, 2001.
352 c.

13. Sedgewick R., Wayne K. Algorithms, 4th Edition. Addison-Wesley
Professional, 2011. 976 p.

14. Skiena S.S. The Algorithm Design Manual, 3rd Edition. Springer, 2020. 793
p.

15. Kolter J.Z., Johnson M.J. Convex Optimization for Machine Learning.
Cambridge University Press, 2020. 234 p.

ISSN 2181-0842 | IMPACT FACTOR 4.525 45 @) e |

