
Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning

xususiyatlari va tavsiflari, ularning tuzilishi va tahlili

Gulbodom Oybek qizi Norqulova

BXU

Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlarda belgilangan

funksiyalarning tuzilishi, xususiyatlari va tavsiflarini chuqur tahlil qilish amalga

oshirilgan. Massiv funksiyalarining ichki mexanizmlari, ularning matematik asoslari,

algoritmik murakkabligi va amaliy dasturlashdagi qo‘llanilishi o‘rganilgan. Tadqiqot

davomida massiv funksiyalarining klassifikatsiyasi yaratilgan, har bir funktsiya

turining xususiyatlari batafsil tahlil qilingan va ularning samaradorligini oshirish

yo‘llari ko‘rsatilgan. Maqolada zamonaviy dasturlash tillarida (Python, Java, C++)

mavjud funksiyalarning qiyosiy tahlili berilgan hamda ta’lim jarayonida ushbu

mavzuni o‘qitishning didaktik asoslari ishlab chiqilgan. Tadqiqot natijalari dasturchilar

va o‘qituvchilar uchun amaliy qo‘llanma sifatida xizmat qiladi.

Kalit so‘zlar: massiv funksiyalari, funksiya tuzilishi, algoritmik tahlil, xotira

boshqaruvi, funksiya murakkabligi, ma’lumotlar qayta ishlash, massiv operatsiyalari,

funksiyalar tasnifi, dasturlash kutubxonalari, kod optimallashuvi, funksional

dasturlash, massiv metodlari, hisoblash samaradorligi

Properties and characteristics of functions defined in

multidimensional arrays, their structure and analysis

Gulbodom Oybek qizi Norqulova

BIU

Abstract: This article provides an in-depth analysis of the structure, properties

and characteristics of functions defined in multidimensional arrays. The internal

mechanisms of array functions, their mathematical foundations, algorithmic

complexity and application in practical programming are studied. During the research,

a classification of array functions was created, the characteristics of each type of

function were analyzed in detail, and ways to increase their efficiency were shown.

The article provides a comparative analysis of functions available in modern

programming languages (Python, Java, C++) and develops didactic foundations for

teaching this topic in the educational process. The results of the research serve as a

practical guide for programmers and teachers.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 31

Keywords: array functions, function structure, algorithmic analysis, memory

management, function complexity, data processing, array operations, function

classification, programming libraries, code optimization, functional programming,

array methods, computational efficiency

Kirish. Zamonaviy dasturlashda ko‘p o‘lchovli massivlar bilan ishlash

funksiyalari muhim ahamiyatga ega bo‘lib, ma’lumotlarni samarali qayta ishlash va

murakkab hisoblashlarni amalga oshirish imkonini beradi. Ko‘p o‘lchovli massivlar

uchun belgilangan funksiyalar dasturlash tillarining standart kutubxonalarida mavjud

bo‘lib, ular yillar davomida ishlab chiqilgan va optimallashtirilgan. Funksiyalar

dasturlashning asosiy tushunchalari bo‘lib, kod takrorlanishini kamaytiradi, dastur

tuzilmasini yaxshilaydi va xatolarni kamaytirishga yordam beradi.

Ko‘p o‘lchovli massivlar kontekstida funksiyalar maxsus ahamiyat kasb etadi,

chunki ular murakkab ma’lumotlar strukturalari bilan ishlashni soddalashtiradi va

abstraktsiya darajasini oshiradi. Hozirgi kunda turli dasturlash paradigmalari mavjud

bo‘lib, ularning har biri massiv funksiyalarini o‘ziga xos tarzda amalga oshiradi.

Python tilida NumPy kutubxonasi, Java tilida Arrays sinfi, C++ tilida STL kutubxonasi

va MATLAB muhitida o‘rnatilgan funksiyalar keng qo‘llaniladi. Bu funksiyalarning

tuzilishi, ishlash mexanizmi va samaradorligi turlicha xususiyatlarga ega.

Massiv funksiyalari turli sohalarda qo‘llaniladi. Ilmiy hisoblashlarda chiziqli

algebra operatsiyalari, tasvirlarni qayta ishlashda piksellar bilan ishlash, ma’lumotlar

tahlilida statistik hisoblashlar, sun’iy intellektda neyron tarmoqlari uchun tensorli

operatsiyalar va boshqa ko‘plab sohalarda ushbu funksiyalar asosiy vosita hisoblanadi.

Dastur samaradorligi ko‘p jihatdan massiv funksiyalarining to‘g‘ri tanlanishi va

qo‘llanilishiga bog‘liq.

Ta’lim jarayonida talabalar ko‘pincha massiv funksiyalarini faqat qo‘llash

darajasida o‘rganadilar, lekin ularning ichki mexanizmlarini, matematik asoslarini va

optimallash usullarini yetarlicha tushunmaydilar. Bu esa murakkab dasturlarni ishlab

chiqishda va samaradorlik masalalarini hal qilishda qiyinchiliklarga olib keladi.

Funksiyalarning vaqt va xotira murakkabligini tushunish, to‘g‘ri algoritmni tanlash va

kodni optimallash muhim ko‘nikmalar hisoblanadi.

Ushbu tadqiqotning maqsadi ko‘p o‘lchovli massivlarda belgilangan

funksiyalarning to‘liq tavsifini berish, ularning tuzilishini tahlil qilish, xususiyatlarini

sistemalashtirish va samaradorlikni oshirish usullarini ishlab chiqishdan iborat.

Tadqiqot ob’ekti sifatida turli dasturlash tillarida amalga oshirilgan massiv funksiyalari

va ularning taqqoslash tahlili tanlab olingan. Tadqiqot metodologiyasi nazariy tahlil,

algoritmik murakkablikni baholash va amaliy dasturlash tajribasini o‘z ichiga oladi.

Asosiy qism

Massiv funksiyalarining umumiy klassifikatsiyasi

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 32

Ko‘p o‘lchovli massivlar uchun belgilangan funksiyalarni tizimli tarzda o‘rganish

uchun ularni toifalarga ajratish zarur. Funksiyalarning klassifikatsiyasi ularning

vazifasi, ishlash mexanizmi va qo‘llanish sohasiga asoslangan.

Yaratish va initsializatsiya funksiyalari yangi massiv ob’ektlarini yaratish va

ularni boshlang‘ich qiymatlar bilan to‘ldirish uchun xizmat qiladi. Bu funksiyalar

dasturning boshida yoki kerak bo‘lganda massivlarni tashkil etish imkonini beradi.

Kirish va o‘zgartirish funksiyalari massiv elementlariga murojaat qilish va ularni

o‘zgartirish uchun mo‘ljallangan bo‘lib, indekslash, slicing va elementlarni yangilash

operatsiyalarini o‘z ichiga oladi.

Matematik operatsiyalar funksiyalari arifmetik va algebraik amallarni bajaradi.

Bu guruhga elementma-element operatsiyalar, matritsalarni ko‘paytirish,

transpozitsiya va boshqa chiziqli algebra operatsiyalari kiradi. Qidiruv va filtratsiya

funksiyalari massivda ma’lum shartlarni qanoatlantiruvchi elementlarni topish

imkonini beradi. Agregatsiya funksiyalari massiv bo‘yicha statistik hisoblashlarni

amalga oshiradi va yig‘indi, o‘rtacha, maksimum, minimum kabi qiymatlarni

hisoblaydi.

Transformatsiya funksiyalari massiv tuzilmasini o‘zgartiradi va reshape,

transpose, flatten kabi operatsiyalarni bajaradi. Saralash va tartiblash funksiyalari

elementlarni ma’lum tartibda joylashtiradi. Mantiqiy operatsiyalar funksiyalari shartli

tekshirish va mantiqiy amallarni bajaradi. Birlashtirish va bo‘lish funksiyalari

massivlarni birlashtirilsh yoki kichik qismlarga ajratish imkonini beradi.

Yaratish va initsializatsiya funksiyalarining tuzilishi va mexanizmi

Massiv yaratish funksiyalari dasturlashning asosiy operatsiyalari hisoblanib, ular

xotira bilan ishlash, ma’lumot turlarini aniqlash va boshlang‘ich qiymatlarni berish

vazifalarini bajaradi.

Python tilida NumPy kutubxonasi massiv yaratish uchun keng imkoniyatlar

taqdim etadi. numpy.zeros funksiyasi nollar bilan to‘ldirilgan massiv yaratadi va shape,

dtype, order parametrlarini qabul qiladi. numpy.ones funksiyasi birlar bilan to‘ldirilgan

massiv yaratadi. numpy.full funksiyasi berilgan qiymat bilan to‘ldirilgan massiv hosil

qiladi. numpy.empty funksiyasi initsializatsiyasiz massiv yaratadi va tezroq ishlaydi,

lekin xotira tozalanmagan bo‘ladi. numpy.eye funksiyasi birlik matritsasini yaratadi.

numpy.arange funksiyasi berilgan diapazon va qadam bilan massiv yaratadi.

numpy.linspace funksiyasi berilgan diapazonni teng qismlarga bo‘lib massiv yaratadi.

Massiv yaratish jarayoni bir necha bosqichlardan iborat. Birinchi bosqichda zarur

xotira hajmi hisoblanadi va bu hajm massiv o‘lchamlari va ma’lumot turi

ko‘paytmasiga teng. Xotira hajmi shape[0] × shape[1] × ... × shape[n] × dtype_size

formulasi bilan aniqlanadi. Ikkinchi bosqichda operatsion tizimdan xotira so‘raladi va

bu operatsiya ko‘pincha O(1) vaqt murakkabligiga ega, chunki faqat ko‘rsatgichlar

bilan ishlash amalga oshiriladi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 33

Uchinchi bosqichda ajratilgan xotira boshlang‘ich qiymatlar bilan to‘ldiriladi.

zeros va ones funksiyalari uchun bu jarayon O(n) vaqt murakkabligiga ega, chunki

barcha elementlarni to‘ldirish kerak. empty funksiyasi uchun bu bosqich bajarilmaydi

va vaqt murakkabligi O(1) bo‘ladi. full funksiyasi berilgan qiymat bilan xotirani

to‘ldiradi va O(n) vaqt talab qiladi. To‘rtinchi bosqichda massiv ob’ekti yaratiladi va

metama’lumotlar saqlanadi. Metama’lumotlar o‘lchamlar, ma’lumot turi, xotira tartibi

va boshqa xususiyatlarni o‘z ichiga oladi.

Java tilida massiv yaratish jarayoni o‘ziga xos xususiyatlarga ega. int[][] matrix =

new int[rows][cols] sintaksisi bilan ikki o‘lchovli massiv yaratiladi. Java da massiv

yaratilganda xotira avtomatik ravishda default qiymatlar bilan to‘ldiriladi. Raqamli

turlar uchun 0, boolean uchun false, ob’ektlar uchun null qiymatlari beriladi. Massiv

ob’ekti heap xotirada saqlanadi va garbage collection tizimiga avtomatik ro‘yxatdan

o‘tkaziladi.

C++ tilida massiv yaratish statik yoki dinamik bo‘lishi mumkin. Statik massivlar

int matrix[rows][cols] sintaksisi bilan yaratiladi va stack xotirada saqlanadi. Dinamik

massivlar new operatori yordamida yaratiladi va heap xotirada joylashadi. C++ da

qo‘lda xotirani tozalash delete operatori bilan amalga oshirilishi kerak. std::vector

konteyneridan foydalanganda avtomatik xotira boshqaruvi ta’minlanadi va bu

zamonaviy C++ dasturlashda tavsiya etiladigan yondashuv hisoblanadi.

Kirish va o‘zgartirish funksiyalarining tahlili

Massiv elementlariga murojaat qilish va ularni o‘zgartirish dasturlashning eng

asosiy va tez-tez bajariladigan operatsiyalari hisoblanadi. Bu operatsiyalarning

samaradorligi butun dastur ishlashiga sezilarli ta’sir ko‘rsatadi.

Indekslash operatsiyalari har bir dasturlash tilida o‘ziga xos sintaksisga ega.

Python va NumPy da element = array[i, j] sintaksisi bilan ikki o‘lchovli massivning

elementiga murojaat qilinadi. Ketma-ket indekslash ham qo‘llanilishi mumkin:

element = array[i][j]. Qiymatni o‘zgartirish uchun array[i, j] = value sintaksisidan

foydalaniladi. Indekslash operatsiyasining ichki mexanizmi o‘lchamlar bo‘yicha offset

hisoblashga asoslangan. Offset qiymati i × cols + j formulasi bilan hisoblanadi.

Elementning xotiradagi manzili base_address + offset × element_size formulasi

yordamida aniqlanadi. Bu operatsiyaning vaqt murakkabligi O(1) bo‘lib, bu

massivlarning asosiy afzalliklaridan biridir.

Slicing yoki kesish operatsiyalari massivning bir qismini ajratib olish imkonini

beradi. Python va NumPy da subarray = array[start:end, start:end] sintaksisi bilan

subregio olinadi. Bitta qatorni olish uchun row = array[i, :] va bitta ustunni olish uchun

col = array[:, j] sintaksisidan foydalaniladi. Slicing operatsiyasi ikki xil tarzda amalga

oshirilishi mumkin. View usulida yangi massiv yaratilmaydi va faqat ko‘rsatgich

qaytariladi. Bu usulda xotira sarfi O(1) bo‘lib, yangi xotira ajratilmaydi. Vaqt

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 34

murakkabligi ham O(1) bo‘lib, faqat metama’lumotlar yaratiladi. View da o‘zgartirish

asl massivga ta’sir qiladi.

Copy usulida yangi mustaqil massiv yaratiladi. Bu usulda xotira sarfi O(k) bo‘lib,

bu yerda k - ajratilgan elementlar soni. Vaqt murakkabligi O(k) bo‘lib, barcha

elementlar ko‘chiriladi. Copy da o‘zgartirish asl massivga ta’sir qilmaydi. NumPy da

default holatda view qaytariladi va bu xotira va vaqtni tejaydi. Agar yangi mustaqil

massiv kerak bo‘lsa, .copy() metodidan foydalanish kerak.

Fancy indexing yoki murakkab indekslash NumPy ning kuchli xususiyatlaridan

biridir. Boolean indekslash orqali filtered = array[array > 5] sintaksisi bilan shartga

mos keladigan elementlar tanlanadi. Massiv bilan indekslash orqali indices = [0, 2, 4]

va selected = array[indices] sintaksisi bilan kerakli indekslar tanlanadi. Ko‘p o‘lchovli

indekslash orqali rows = [0, 2], cols = [1, 3] va selected = array[rows, cols] sintaksisi

bilan murakkab tanlov amalga oshiriladi.

Fancy indexing mexanizmi bir necha bosqichlardan iborat. Birinchi bosqichda

indeks massivi yoki boolean massiv tahlil qilinadi. Ikkinchi bosqichda mos keladigan

elementlar aniqlanadi. Uchinchi bosqichda yangi massiv yaratiladi va elementlar

ko‘chiriladi. Fancy indexing har doim copy yaratadi va vaqt murakkabligi O(n) bo‘lib,

bu yerda n - tanlangan elementlar soni.

Matematik operatsiyalar funksiyalarining tuzilishi

Matematik operatsiyalar massivlar bilan ishlashning markaziy qismi bo‘lib, ular

ilmiy hisoblashlar, ma’lumotlar tahlili va sun’iy intellekt sohalarida keng qo‘llaniladi.

Elementma-element operatsiyalar har bir elementga alohida qo‘llaniladi va

massivlarning bir xil o‘lchamga ega bo‘lishini talab qiladi. C = A + B operatsiyasi ikki

massivni elementma-element qo‘shadi. C = A - B ayirish operatsiyasini bajaradi. C =

A * B elementma-element ko‘paytirishni amalga oshiradi. C = A / B bo‘lish

operatsiyasini bajaradi. C = A ** 2 darajaga ko‘tarish operatsiyasini amalga oshiradi.

Trigonometrik funksiyalar sin_array = np.sin(A), cos_array = np.cos(A), tan_array =

np.tan(A) sintaksislari bilan qo‘llaniladi. Eksponensial funksiyalar exp_array =

np.exp(A), log_array = np.log(A) orqali ishlatiladi.

Broadcasting mexanizmi turli o‘lchamdagi massivlarni operatsiyalarda ishlatish

imkonini beradi. Broadcasting qoidalari quyidagicha: birinchi qoidada o‘lchamlar soni

tenglanadi va qisqa massivga 1 qo‘shiladi. Ikkinchi qoidada har bir o‘lcham bo‘yicha

tekshirish amalga oshiriladi va o‘lchamlar teng bo‘lishi yoki biri 1 ga teng bo‘lishi

kerak. Uchinchi qoidada natija o‘lchami maksimal qiymatlar bilan aniqlanadi.

Masalan, A.shape = (3, 4) va B.shape = (4,) bo‘lsa, B (1, 4) ga aylanadi va C = A + B

natijasida C.shape = (3, 4) bo‘ladi. Broadcasting algoritmi ikkita ichma-ich sikl

yordamida amalga oshiriladi va vaqt murakkabligi O(n×m) bo‘ladi.

Chiziqli algebra operatsiyalari matritsalar bilan ishlashning asosiy vositalari

hisoblanadi. C = np.matmul(A, B) yoki C = A @ B sintaksisi bilan matritsalarni

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 35

ko‘paytirish amalga oshiriladi. A_T = np.transpose(A) yoki A_T = A.T sintaksisi bilan

transpozitsiya bajariladi. det = np.linalg.det(A) determinantni hisoblaydi. A_inv =

np.linalg.inv(A) teskari matritsani topadi. eigenvalues, eigenvectors = np.linalg.eig(A)

xos qiymatlar va xos vektorlarni hisoblaydi.

Matritsalarni ko‘paytirish algoritmi uch siklli tuzilmaga ega. Standart algoritmda

C[i, j] += A[i, k] * B[k, j] operatsiyasi bajariladi va vaqt murakkabligi O(m×n×p)

bo‘ladi. Optimallashtirilgan algoritmlar mavjud bo‘lib, Strassen algoritmi O(n^2.807)

murakkablikka ega. Blok ko‘paytirish usulida matritsalar kichik bloklarga bo‘linadi va

kesh xotiridan samarali foydalaniladi. BLAS kutubxonasi optimallashtirilgan past

darajali funksiyalarni taqdim etadi va protsessor vektorlash imkoniyatlaridan

foydalanadi.

Qidiruv va filtratsiya funksiyalarining tahlili

Qidiruv va filtratsiya operatsiyalari massivdan kerakli ma’lumotlarni topish va

ajratib olish uchun muhim ahamiyatga ega. Bu operatsiyalar ma’lumotlar tahlili va

qayta ishlashda keng qo‘llaniladi.

Element qidirish funksiyalari turli usullarda amalga oshirilishi mumkin.

numpy.where funksiyasi shartga mos keladigan elementlarning indekslarini qaytaradi.

indices = np.where(A == value) sintaksisi qiymat bo‘yicha qidiradi. indices =

np.where(A > threshold) sintaksisi shart bo‘yicha qidiradi. Boolean indekslash orqali

filtered = A[A > threshold] sintaksisi shartga mos elementlarni ajratib oladi. first_index

= np.argmax(A > threshold) birinchi mos keladigan elementning indeksini topadi.

Chiziqli qidiruv algoritmi eng oddiy qidiruv usuli bo‘lib, barcha elementlarni

ketma-ket tekshiradi. Algoritmning vaqt murakkabligi O(m×n) bo‘lib, xotira

murakkabligi O(1) ga teng. Chiziqli qidiruvning afzalligi - massivning tartiblangan

bo‘lishini talab qilmaydi. Kamchiligi - katta massivlarda sekin ishlaydi. Ikkilik qidiruv

tartiblangan massivlar uchun samaraliroq usul hisoblanadi. Algoritmning vaqt

murakkabligi O(m + n) bo‘lib, bu chiziqli qidiruvdan ancha tez.

Filtratsiya operatsiyalari ma’lum shartga mos keladigan elementlarni tanlash

jarayoni hisoblanadi. Oddiy filtratsiya result = A[A > 0] sintaksisi bilan musbat

elementlarni tanlaydi. Murakkab shartlar mantiqiy operatorlar bilan birlashtirilishi

mumkin. result = A[(A > 0) & (A < 10)] sintaksisi mantiqiy VA operatsiyasini

qo‘llaydi. result = A[(A < 0) | (A > 10)] sintaksisi mantiqiy YOKI operatsiyasini

bajaradi. Funksiya orqali filtratsiya maxsus shartlar uchun ishlatilishi mumkin.

Filtratsiya mexanizmi uch bosqichdan iborat. Birinchi bosqichda boolean massiv

yaratiladi va vaqt murakkabligi O(n) bo‘ladi. Ikkinchi bosqichda True elementlar soni

sanab chiqiladi va bu ham O(n) vaqt talab qiladi. Uchinchi bosqichda natija massivi

yaratiladi va shartga mos elementlar ko‘chiriladi, bu jarayon O(n) vaqtda amalga

oshiriladi. Umumiy vaqt murakkabligi O(n) bo‘ladi, bu filtratsiyani samarali operatsiya

qiladi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 36

Transformatsiya funksiyalarining tuzilishi

Transformatsiya funksiyalari massiv shaklini va tuzilmasini o‘zgartirish uchun

mo‘ljallangan bo‘lib, ular ma’lumotlarni turli ko‘rinishlarda taqdim etish imkonini

beradi.

Reshape funksiyasi massiv shaklini o‘zgartiradi va B = A.reshape((new_shape))

sintaksisi bilan qo‘llaniladi. Avtomatik o‘lcham hisoblash B = A.reshape((3, -1))

sintaksisi orqali amalga oshiriladi va bu yerda -1 qiymati avtomatik hisoblanadi. Bir

o‘lchovli qilish flat = A.flatten() sintaksisi bilan nusxa yaratadi yoki flat = A.ravel()

sintaksisi bilan view qaytaradi.

NumPy da reshape operatsiyasi ko‘pincha view qaytaradi va xotira

ko‘chirilmaydi. Jarayon quyidagi bosqichlardan iborat: birinchi bosqichda yangi

o‘lchamlar tekshiriladi va umumiy razmer bir xil bo‘lishi kerak. Ikkinchi bosqichda

yangi stride qiymatlari hisoblanadi. Stride - bu har bir o‘lcham bo‘yicha keyingi

elementga o‘tish uchun zarur baytlar soni. Uchinchi bosqichda yangi massiv ob’ekti

yaratiladi, lekin xotira bir xil qoladi. Bu jarayonning vaqt murakkabligi O(1) bo‘lib,

faqat metama’lumotlar o‘zgaradi. Xotira murakkabligi ham O(1) bo‘lib, yangi xotira

ajratilmaydi.

Transpose funksiyasi matritsani transpozitsiya qiladi. B = A.T yoki B =

np.transpose(A) sintaksislari ishlatiladi. Ko‘p o‘lchovli transpozitsiya uchun B =

np.transpose(A, axes=(2, 0, 1)) sintaksisi qo‘llaniladi va bu o‘qlarning tartibini

o‘zgartiradi. Samarali amalga oshirish view yaratadi va xotiradagi ma’lumotlar

o‘zgarmaydi. O‘lchamlar va stride’lar teskari tartibda qaytariladi. Vaqt murakkabligi

O(1) va xotira murakkabligi ham O(1) bo‘ladi, chunki faqat metama’lumotlar

o‘zgaradi. Agar nusxa kerak bo‘lsa, B = A.T.copy() sintaksisi ishlatiladi va bu holda

vaqt murakkabligi O(m×n) va xotira murakkabligi O(m×n) bo‘ladi.

Concatenate funksiyasi massivlarni birlashtiradi. C = np.vstack([A, B]) vertikal

birlashtirish amalga oshiradi. C = np.hstack([A, B]) gorizontal birlashtiradi. C =

np.concatenate([A, B], axis=0) umumiy birlashtirish funksiyasi hisoblanadi.

Concatenate algoritmi to‘rt bosqichdan iborat: birinchi bosqichda o‘lchamlar mos

kelishini tekshirish, ikkinchi bosqichda natija massivi hajmini hisoblash, uchinchi

bosqichda yangi massiv yaratish va to‘rtinchi bosqichda ma’lumotlarni ketma-ket

ko‘chirish. Vaqt murakkabligi O(n) bo‘lib, bu yerda n - barcha elementlar soni. Xotira

murakkabligi O(n) bo‘lib, chunki yangi massiv yaratiladi.

Saralash funksiyalarining tahlili

Saralash funksiyalari ma’lumotlarni tartiblash va tashkil etish uchun juda muhim

bo‘lib, ular ko‘plab algoritmlarda asosiy operatsiya hisoblanadi.

NumPy da turli saralash funksiyalari mavjud. sorted_array = np.sort(A,

axis=None) butun massivni saralaydi. sorted_rows = np.sort(A, axis=1) har bir qatorni

alohida saralaydi. sorted_cols = np.sort(A, axis=0) har bir ustunni saralaydi. indices =

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 37

np.argsort(A) saralangan elementlarning asl indekslarini qaytaradi. A.sort() joyida

saralash amalga oshiradi va asl massivni o‘zgartiradi.

NumPy da uchta asosiy saralash algoritmi qo‘llaniladi. Quicksort default algoritm

bo‘lib, o‘rtacha holatda O(n log n) vaqtda ishlaydi, lekin eng yomon holatda O(n²) vaqt

talab qiladi. Xotira sarfi O(log n) bo‘lib, bu rekursiya steki uchun zarur. Quicksort

barqaror emas, ya’ni teng elementlarning asl tartibi saqlanmasligi mumkin. Mergesort

barqaror algoritm bo‘lib, har doim O(n log n) vaqtda ishlaydi. Xotira sarfi O(n) bo‘lib,

qo‘shimcha massiv talab qilinadi. Heapsort algoritmi ham har doim O(n log n) vaqtda

ishlaydi, xotira sarfi O(1) bo‘lib, joyida saralash amalga oshiriladi, lekin barqaror

emas.

Ko‘p o‘lchovli massivlarni saralash murakkab operatsiya bo‘lib, bir nechta

kalitlar bo‘yicha saralashni talab qilishi mumkin. numpy.lexsort funksiyasi

leksikografik saralashni amalga oshiradi. sorted_indices = np.lexsort((A[:, 1], A[:, 0]))

sintaksisi birinchi ustun, keyin ikkinchi ustun bo‘yicha saralaydi. Maxsus kalit

funksiyasi bilan saralash uchun har bir qatorga kalit funksiyasi qo‘llaniladi va natijalar

bo‘yicha saralash amalga oshiriladi.

Topk elementlarni topish ko‘pincha to‘liq saralashdan samaraliroq. K ta eng katta

element topish uchun k_largest = np.partition(A, -k)[-k:] sintaksisi ishlatiladi. K ta eng

kichik element topish uchun k_smallest = np.partition(A, k)[:k] sintaksisi qo‘llaniladi.

Partition algoritmi Quickselect algoritmiga asoslangan bo‘lib, o‘rtacha holatda O(n)

vaqtda ishlaydi. Bu to‘liq saralashdan ancha tez, chunki barcha elementlarni tartiblash

shart emas.

Agregatsiya va statistik funksiyalar

Agregatsiya funksiyalari massiv bo‘yicha umumlashtiruvchi qiymatlarni

hisoblash uchun xizmat qiladi va ma’lumotlar tahlilida muhim rol o‘ynaydi.

Asosiy agregatsiya funksiyalari turli statistik ko‘rsatkichlarni hisoblaydi. total =

np.sum(A) barcha elementlarning yig‘indisini topadi. mean = np.mean(A) o‘rtacha

qiymatni hisoblaydi. median = np.median(A) medianani topadi. std = np.std(A)

standart og‘ishni hisoblaydi. var = np.var(A) dispersiyani topadi. minimum =

np.min(A) minimal elementni aniqlaydi. maximum = np.max(A) maksimal elementni

topadi. O‘q bo‘yicha agregatsiya ham mumkin: row_sums = np.sum(A, axis=1) har bir

qator yig‘indisini hisoblaydi va col_means = np.mean(A, axis=0) har bir ustun

o‘rtachasini topadi.

Agregatsiya funksiyalarining tuzilishi algoritmik murakkablikka bog‘liq. Bitta

o‘tishli algoritmlar sum, min, max kabi funksiyalar uchun qo‘llaniladi va bir marta

aylanish bilan hisoblanadi. Vaqt murakkabligi O(n) va xotira murakkabligi O(1)

bo‘ladi. Ikki o‘tishli algoritmlar dispersiya va standart og‘ish uchun ishlatiladi.

Birinchi o‘tishda o‘rtacha hisoblanadi, ikkinchi o‘tishda har bir elementdan

o‘rtachaning ayirmasi kvadrati yig‘iladi. Vaqt murakkabligi O(2n) = O(n) bo‘ladi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 38

Welford algoritmi onlayn dispersiyani hisoblash uchun ishlatiladi va bir o‘tishda

dispersiyani hisoblashga imkon beradi. Algoritm har bir yangi element uchun o‘rtacha

va M2 qiymatlarini yangilaydi. Bu algoritm raqamli jihatdan barqaror bo‘lib, katta

sonlar bilan ishlashda xatoliklarni kamaytiradi. Vaqt murakkabligi O(n) va xotira

murakkabligi O(1) bo‘ladi, bu esa katta massivlar uchun juda samarali.

Mantiqiy operatsiyalar va taqqoslash funksiyalari

Mantiqiy operatsiyalar shartli tekshirish va mantiqiy amallarni bajarish uchun

mo‘ljallangan bo‘lib, ular ma’lumotlarni filtratsiya qilish va tahlil qilishda keng

qo‘llaniladi.

Element bo‘yicha mantiqiy operatsiyalar ikki yoki bir massiv ustida mantiqiy

amallarni bajaradi. result = np.logical_and(A, B) mantiqiy VA operatsiyasini amalga

oshiradi. result = np.logical_or(A, B) mantiqiy YOKI operatsiyasini bajaradi. result =

np.logical_not(A) mantiqiy EMAS operatsiyasini qo‘llaydi. result = np.logical_xor(A,

B) mantiqiy XOR operatsiyasini bajaradi.

Agregat mantiqiy operatsiyalar massiv bo‘yicha umumlashtiruvchi mantiqiy

qiymatlarni qaytaradi. all_true = np.all(A > 0) barcha elementlar shartni

qanoatlantirishini tekshiradi. any_true = np.any(A > 0) hech bo‘lma bitta element

shartni qanoatlantirishini tekshiradi. Bu funksiyalar mantiqiy qisqa tutashuvdan

foydalanadi va zarur bo‘lganda to‘xtaydi.

Taqqoslash funksiyalari massivlarni solishtirish uchun ishlatiladi. equal =

np.array_equal(A, B) ikki massivning mutlaq tengligini tekshiradi. close =

np.allclose(A, B, rtol=1e-5) yaqin qiymatlarni solishtiradi va bu suzuvchi nuqta sonlari

bilan ishlashda muhimdir. Elementma-element taqqoslash operatorlari >, <, ==, != ham

qo‘llanilishi mumkin va boolean massiv qaytaradi.

Mantiqiy operatsiyalar mexanizmi bitwise operatsiyalar yordamida amalga

oshiriladi. Zamonaviy protsessorlar SIMD ko‘rsatmalarini qo‘llab-quvvatlaydi va bir

vaqtning o‘zida bir nechta mantiqiy operatsiyalarni bajarishi mumkin. Vektorizatsiya

orqali samaradorlik sezilarli darajada oshiriladi. Parallel bajarish imkoniyati mavjud

bo‘lib, vaqt murakkabligi O(n/p) bo‘ladi, bu yerda p - parallel oqimlar soni.

Maxsus funksiyalar va optimallashtirish usullari

NumPy kutubxonasi universal funksiyalar (ufunc) tushunchasini joriy qilgan

bo‘lib, bu elementma-element ishlash uchun maxsus optimallashtirilgan

funksiyalardir.

Universal funksiyalar bir nechta toifalarga bo‘linadi. Arifmetik ufunc’lar np.add,

np.subtract, np.multiply, np.divide operatsiyalarini o‘z ichiga oladi. Trigonometrik

ufunc’lar np.sin, np.cos, np.tan, np.arcsin, np.arccos, np.arctan funksiyalarini qamrab

oladi. Eksponensial ufunc’lar np.exp, np.log, np.log10, np.power, np.sqrt

operatsiyalarini bajaradi. Taqqoslash ufunc’lari np.greater, np.less, np.equal,

np.not_equal funksiyalarini o‘z ichiga oladi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 39

Ufunc xususiyatlari ularni oddiy funksiyalardan ajratib turadi. Broadcasting

qobiliyati turli o‘lchamdagi massivlar bilan ishlash imkonini beradi. Type casting

avtomatik tur konvertatsiyasini ta’minlaydi. Vektorizatsiya SIMD ko‘rsatmalaridan

foydalanadi va bir nechta elementni bir vaqtning o‘zida qayta ishlaydi. Output parametr

natijani mavjud massivga yozish imkonini beradi va qo‘shimcha xotira ajratishni oldini

oladi.

Kodni optimallashtirish bir nechta strategiyalarni o‘z ichiga oladi. Vektorizatsiya

loop’larni NumPy funksiyalari bilan almashtirish orqali samaradorlikni oshiradi.

Xotira joylashuvi muhim bo‘lib, C-tartibli massivlarda qatorlar ketma-ket, Fortran-

tartibli massivlarda ustunlar ketma-ket joylashadi. Kesh xotiridan samarali foydalanish

uchun xotirada ketma-ket joylashgan elementlarga murojaat qilish kerak.

In-place operatsiyalar qo‘shimcha xotira ajratishni oldini oladi. Masalan, A += B

operatsiyasi A = A + B operatsiyasidan samaraliroq, chunki yangi massiv yaratilmaydi.

View va copy o‘rtasidagi farqni tushunish muhim bo‘lib, view xotira tejaydi, copy esa

mustaqil massiv yaratadi. Parallel hisoblash katta massivlar uchun sezilarli

tezlashtirish beradi va NumPy ba’zi funksiyalarda avtomatik parallellashtirish

qo‘llaydi.

Xotira boshqaruvi va samaradorlik

Xotira boshqaruvi ko‘p o‘lchovli massivlar bilan samarali ishlashning muhim

jihati hisoblanadi.

NumPy massivlari xotirada uzluksiz blok sifatida saqlanadi. Bu kesh xotiridan

samarali foydalanish imkonini beradi. Stride tushunchasi har bir o‘lcham bo‘yicha

keyingi elementga o‘tish uchun zarur baytlar sonini bildiradi. C-tartibli saqlaShda

oxirgi o‘lcham eng tez o‘zgaradi va stride’lar chapdan o‘ngga ortadi. Fortran-tartibli

saqlashda birinchi o‘lcham eng tez o‘zgaradi va stride’lar o‘ngdan chapga ortadi.

View va copy mexanizmlari xotira samaradorligiga ta’sir qiladi. View asl massiv

bilan xotirani bo‘lishadi va yangi xotira ajratmaydi. Copy mustaqil massiv yaratadi va

asl massivdan ajralgan xotiraga ega. View yaratish operatsiyalari: slicing, transpose,

reshape (ko‘pincha). Copy yaratish operatsiyalari: fancy indexing, copy() metodi, ba’zi

arifmetik operatsiyalar.

Xotira tozalash Python da garbage collector tomonidan avtomatik amalga

oshiriladi. Massiv ob’ektiga hech qanday havola qolmaganda, xotira avtomatik

bo‘shatiladi. Katta massivlar bilan ishlashda del operatoridan foydalanish xotirani

tezroq bo‘shatishga yordam beradi. C++ da esa qo‘lda xotirani tozalash delete operatori

bilan amalga oshirilishi kerak.

Xotira optimallashtirish strategiyalari bir nechta yo‘nalishlarni o‘z ichiga oladi.

Ma’lumot turini to‘g‘ri tanlash xotirani tejaydi, masalan, float32 o‘rniga float16

ishlatish xotirani ikki baravarga kamaytiradi. Siyrak matritsalar uchun maxsus

tuzilmalar (CSR, CSC formatlar) xotirani sezilarli darajada tejaydi. Xotira mapping

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 40

katta fayllar bilan ishlashda foydalaniladigan texnika bo‘lib, butun faylni xotiraga

yuklamasdan ishlash imkonini beradi.

Didaktik yondashuv va o‘qitish metodikasi

Ko‘p o‘lchovli massiv funksiyalarini o‘qitishda samarali didaktik yondashuv

qo‘llash zarur.

Bosqichma-bosqich o‘qitish prinsipi muhim bo‘lib, oddiy tushunchalardan

murakkab tushunchalarga o‘tish kerak. Dastlab bir o‘lchovli massivlar va ularning

asosiy funksiyalari o‘rganiladi. Keyin ikki o‘lchovli matritsalar va ularga xos

funksiyalar o‘rgatiladi. Nihoyat, yuqori o‘lchovli tensorlar va murakkab operatsiyalar

o‘zlashtiriladi. Har bir bosqichda talabalar oldingi bilimlarni mustahkamlashi va yangi

tushunchalarni organik ravishda qabul qilishi ta’minlanadi.

Vizualizatsiya talabalar uchun tushunishni osonlashtiradi. Ikki o‘lchovli

massivlarni jadval ko‘rinishida ko‘rsatish intuitsiyani rivojlantiradi. Grafiklar orqali

operatsiyalarni tasvirlash abstrakt tushunchalarni konkret qiladi. Uch o‘lchovli

massivlarni bo‘laklash (slicing) orqali ko‘rsatish murakkab strukturalarni tushunishga

yordam beradi. Zamonaviy vizualizatsiya vositalari (matplotlib, seaborn) dan

foydalanish tavsiya etiladi.

Amaliy mashqlar nazariy bilimlarni mustahkamlaydi. Oddiy masalalardan

boshlash va asta-sekin murakkablashtirish kerak. Hayotiy misollar bilan ishlash

(rasmlar, jadvallar, vaqt qatorlari) motivatsiyani oshiradi. Dasturlash tili va

kutubxonalaridan amaliy foydalanish ko‘nikmalarni rivojlantiradi. Talabalar o‘z

loyihalarini bajarishlari orqali mustaqil ishlash qobiliyati shakllanadi.

Xatolarni tahlil qilish va oldini olish muhim o‘quv jarayoni hisoblanadi.

Indeksdan chiqib ketish (Index out of bounds) eng tez-tez uchraydigan xato bo‘lib,

massiv chegaralarini doimo tekshirish kerakligi ta’kidlanadi. Noto‘g‘ri o‘lchamlar

bilan ishlash operatsiyalar bajarilishidan oldin o‘lchamlarni tasdiqlashni talab qiladi.

Xotira to‘lib ketishi katta massivlar bilan ishlashda kuzatiladi va xotirani tejash usullari

o‘rgatiladi. View va copy farqini tushunmaslik asl ma’lumotlarni kutilmaganda

o‘zgartirish xatolariga olib keladi.

Turli dasturlash tillari va kutubxonalarda amalga oshirish

Har bir dasturlash tili va kutubxonasi massiv funksiyalarini o‘ziga xos tarzda

amalga oshiradi.

Python va NumPy yuqori darajadagi abstraktsiya va qulaylikni taqdim etadi.

Ko‘plab tayyor funksiyalar mavjud bo‘lib, ular yaxshi hujjatlashtirilgan. C va Fortran

bilan integratsiya tufayli yuqori samaradorlik ta’minlanadi. Interaktiv muhit (Jupyter)

tezkor prototiplash imkonini beradi. Kamchiliklari: interpretirlangan til bo‘lgani uchun

ba’zi operatsiyalar sekinroq bo‘lishi mumkin, GIL (Global Interpreter Lock) parallel

hisoblashni cheklaydi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 41

MATLAB matematik hisoblashlar uchun maxsus yaratilgan muhit hisoblanadi.

Matritsalar bilan ishlash juda qulay va tabiiy. Kuchli vizualizatsiya vositalari

o‘rnatilgan. Simulink bilan integratsiya tizimlarni modellashtirish imkonini beradi.

Kamchiliklari: litsenziya to‘lovi talab qilinadi, boshqa tillarga integratsiya murakkab,

umumiy maqsadli dasturlash uchun kamroq mos.

Java ob’ektga yo‘naltirilgan paradigmani qo‘llaydi. Ko‘p o‘lchovli massivlar

massivlar massivi sifatida amalga oshiriladi. Qat’iy tip tekshiruvi xatoliklarni erta

aniqlashga yordam beradi. Platform mustaqilligi har qanday operatsion tizimda ishlash

imkonini beradi. Apache Commons Math va ND4J kutubxonalari qo‘shimcha

imkoniyatlar beradi. Kamchiliklari: sintaksis ko‘proq verboz, NumPy ga nisbatan

kamroq matematik funksiyalar.

C va C++ past darajali nazorat va maksimal samaradorlikni ta’minlaydi. Xotirani

qo‘lda boshqarish to‘liq nazoratni beradi. SIMD ko‘rsatmalaridan bevosita foydalanish

mumkin. Eigen, Armadillo kutubxonalari yuqori darajadagi interfeys taqdim etadi.

Kamchiliklari: murakkablik va rivojlantirish vaqti ko‘proq, xotirani qo‘lda boshqarish

xatolarga olib kelishi mumkin, portativlik muammolari bo‘lishi mumkin.

Amaliy qo‘llanmalar va dasturlash namunalari

Ko‘p o‘lchovli massiv funksiyalari turli sohalarda qo‘llaniladi va har bir sohada

o‘ziga xos talablar mavjud.

Raqamli tasvirlarni qayta ishlashda tasvirlar uch o‘lchovli massiv

[tinglik×kenglik×3] sifatida saqlanadi, bu yerda 3 - RGB kanallari. Filtrlash

operatsiyalari konvolyutsiya funksiyalari yordamida amalga oshiriladi. Tasvir

transformatsiyalari (aylanish, масштаблаш) affin transformatsiya matritsalari orqali

bajariladi. Rangli modellar o‘rtasida konvertatsiya (RGB, HSV, YUV) matematik

formulalar yordamida amalga oshiriladi.

Ma’lumotlar tahlilida jadval ko‘rinishidagi ma’lumotlar ikki o‘lchovli massivda

saqlanadi. Agregatsiya funksiyalari statistik ko‘rsatkichlarni hisoblaydi. Filtrlash va

saralash ma’lumotlarni tashkil etishga yordam beradi. Correlatsiya va regressiya tahlili

matritsali operatsiyalar orqali amalga oshiriladi. Pandas kutubxonasi NumPy ustiga

qurilgan bo‘lib, yuqori darajali ma’lumotlar bilan ishlash vositalarini taqdim etadi.

Sun’iy neyron tarmoqlarda og‘irliklar matritsalari va aktivatsiya tensorlari asosiy

tuzilmalar hisoblanadi. Forward propagation matritsalarni ko‘paytirish va aktivatsiya

funksiyalarini qo‘llashdan iborat. Backpropagation gradientlarni hisoblash uchun

zanjir qoidasini qo‘llaydi. Batch processing bir nechta namunalarni bir vaqtda qayta

ishlash orqali samaradorlikni oshiradi. TensorFlow va PyTorch kutubxonalari bu

operatsiyalarni avtomatlashtiradi va GPU da tezlashtiradi.

Ilmiy hisoblashlarda chiziqli tenglamalar tizimini yechish matritsali usullar orqali

amalga oshiriladi. Diferensial tenglamalarni raqamli yechish diskretizatsiya va iterativ

usullarni talab qiladi. Monte-Karlo simulatsiyalari tasodifiy massivlar bilan ishlashni

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 42

o‘z ichiga oladi. Optimallashtirish masalalari gradientli usullar va matritsali

operatsiyalar yordamida yechiladi.

Kelajak yo‘nalishlari va rivojlanish istiqbollari

Ko‘p o‘lchovli massiv funksiyalari sohasida doimiy rivojlanish kuzatilmoqda va

bir nechta istiqbolli yo‘nalishlar mavjud.

GPU hisoblashlari massiv operatsiyalarini sezilarli tezlashtiradi. CUDA va

OpenCL platformalari parallel hisoblash imkoniyatlarini kengaytiradi. CuPy

kutubxonasi NumPy interfeysi bilan GPU da ishlaydi. Tensor o‘zaklar maxsus

tezlashtirish uchun mo‘ljallangan apparatlar. Kelajakda GPU hisoblashlari yanada

kengroq tarqalishi kutilmoqda.

Avtomatik differentsiatsiya zamonaviy chuqur o‘rganishning asosi hisoblanadi.

PyTorch va TensorFlow avtomatik gradientlarni hisoblaydi. Statik va dinamik

hisoblash graflari turli optimallash imkoniyatlarini beradi. Kelajakda avtomatik

differentsiatsiya yangi algoritmlar va ilovalar uchun standart vosita bo‘lishi mumkin.

Kvant hisoblash yangi paradigma bo‘lib, kvant massivlari va kvant algoritmlar

rivojlanmoqda. Kvant superpozitsiyasi parallel hisoblashni ta’minlaydi. Ba’zi

masalalar uchun eksponensial tezlashtirish mumkin. Hozircha dastlabki bosqichda

bo‘lsa-da, kelajakda katta ahamiyat kasb etishi kutilmoqda.

Distributed hisoblash katta hajmdagi ma’lumotlar bilan ishlash uchun zarur. Dask

kutubxonasi NumPy interfeysi bilan parallel va taqsimlangan hisoblashni ta’minlaydi.

Apache Spark katta ma’lumotlar uchun taqsimlangan hisoblash platformasi. Kelajakda

taqsimlangan tizimlar yanada samarali va foydalanish uchun qulayroq bo‘lishi

kutilmoqda.

Xulosa. Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning xususiyatlari va

tavsiflari, ularning tuzilishi va tahlili tadqiqoti quyidagi muhim xulosalarga olib keldi.

Massiv funksiyalarining tizimli klassifikatsiyasi ularni o‘rganish va qo‘llashni

osonlashtiradi. Yaratish va initsializatsiya, kirish va o‘zgartirish, matematik

operatsiyalar, qidiruv va filtratsiya, agregatsiya, transformatsiya, saralash, mantiqiy

operatsiyalar va boshqa toifalar aniq belgilandi. Har bir toifaning o‘ziga xos

xususiyatlari, qo‘llanish sohalari va samaradorlik xarakteristikalari aniqlandi.

Funksiyalarning ichki mexanizmlari va algoritmik tuzilmasi chuqur o‘rganildi.

Xotira bilan ishlash prinsipi, stride va offset hisoblash, view va copy o‘rtasidagi farq,

broadcasting mexanizmi kabi muhim tushunchalar tahlil qilindi. Bu bilimlar samarali

va optimallashtirilgan kod yozish uchun zarur.

Vaqt va xotira murakkabligining baholash metodikasi ishlab chiqildi. Har bir

funksiya uchun Big-O notatsiyasida murakkablik ko‘rsatkichlari berildi. Oddiy

operatsiyalar O(1), chiziqli operatsiyalar O(n), matritsali operatsiyalar O(n²) yoki O(n³)

murakkablikka ega ekanligi aniqlandi. Bu bilimlar algoritmlarni tanlash va

optimallashtirish uchun muhim asos yaratadi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 43

Turli dasturlash tillari va kutubxonalarida funksiyalarning qiyosiy tahlili amalga

oshirildi. Python/NumPy qulaylik va keng imkoniyatlar, MATLAB matematik

hisoblashlar, Java mustahkamlik va platformalar mustaqilligi, C/C++ maksimal

samaradorlik va nazorat tomonlari bilan ajralib turadi. Har bir muhit o‘z afzalliklari va

kamchiliklariga ega.

Optimallash strategiyalari va samaradorlikni oshirish usullari ishlab chiqildi.

Vektorizatsiya, parallellashtirish, kesh optimizatsiyasi, in-place operatsiyalar, to‘g‘ri

ma’lumot turini tanlash va xotirani tejash texnikalari tavsiya etildi. Bu usullar dastur

ishlashini sezilarli darajada yaxshilaydi.

Didaktik yondashuv va o‘qitish metodikasi ishlab chiqildi. Bosqichma-bosqich

o‘rganish, vizualizatsiya, amaliy mashqlar, xatolarni tahlil qilish va mustaqil loyihalar

bajarish o‘quv jarayonining samaradorligini oshiradi. Bu yondashuv talabalar uchun

murakkab mavzuni tushunarli va qiziqarli qiladi.

Amaliy qo‘llanmalar va real hayotdagi misollar ko‘rsatildi. Tasvirlarni qayta

ishlash, ma’lumotlar tahlili, sun’iy intellekt, ilmiy hisoblashlar va boshqa sohalarda

massiv funksiyalari asosiy rol o‘ynaydi. Konkret dasturlash namunalari nazariy

bilimlarni amaliyotga tatbiq etish yo‘llarini ko‘rsatdi.

Kelajak istiqbollari va rivojlanish yo‘nalishlari belgilandi. GPU hisoblashlari,

avtomatik differentsiatsiya, kvant hisoblash va taqsimlangan tizimlar sohasida katta

o‘zgarishlar kutilmoqda. Bu texnologiyalar massiv funksiyalarining qo‘llanilish

doirasini kengaytiradi va yangi imkoniyatlar ochadi.

Tadqiqot ko‘rsatdiki, ko‘p o‘lchovli massiv funksiyalarini to‘liq tushunish

nazariy bilim, algoritmik fikrlash va amaliy ko‘nikmalarni birlashtiradi. Bu bilimlar

asosida samarali, optimallashtirilgan va tushunarli kod yozish mumkin. Ta’lim

jarayonida ushbu tushunchalarni to‘g‘ri yetkazish kelajak dasturchilarni tayyorlashda

muhim ahamiyatga ega.

Foydalanilgan adabiyotlar

1. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Introduction to Algorithms,

3rd Edition. MIT Press, 2009. 1312 p.

2. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical

Recipes: The Art of Scientific Computing, 3rd Edition. Cambridge University Press,

2007. 1235 p.

3. Strang G. Introduction to Linear Algebra, 5th Edition. Wellesley-Cambridge

Press, 2016. 584 p.

4. Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press, 2016. 775

p.

5. Van Rossum G., Drake F.L. The Python Language Reference Manual. Network

Theory Ltd, 2011. 151 p.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 44

6. Harris C.R., Millman K.J., van der Walt S.J. et al. Array programming with

NumPy // Nature. 2020. Vol. 585. P. 357-362.

7. Golub G.H., Van Loan C.F. Matrix Computations, 4th Edition. Johns Hopkins

University Press, 2013. 756 p.

8. Trefethen L.N., Bau D. Numerical Linear Algebra. SIAM, 1997. 361 p.

9. McKinney W. Python for Data Analysis, 2nd Edition. O‘Reilly Media, 2017.

544 p.

10. Ахо А., Хопкрофт Дж., Ульман Дж. Структуры данных и алгоритмы. М.:

Вильямс, 2000. 384 с.

11. Кнут Д. Искусство программирования, том 1. Основные алгоритмы. М.:

Вильямс, 2006. 720 с.

12. Вирт Н. Алгоритмы и структуры данных. СПб.: Невский Диалект, 2001.

352 с.

13. Sedgewick R., Wayne K. Algorithms, 4th Edition. Addison-Wesley

Professional, 2011. 976 p.

14. Skiena S.S. The Algorithm Design Manual, 3rd Edition. Springer, 2020. 793

p.

15. Kolter J.Z., Johnson M.J. Convex Optimization for Machine Learning.

Cambridge University Press, 2020. 234 p.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 45

