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Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlar uchun belgilangan 

funksiyalarning matematik tuzilishi, xususiyatlari va tahlili chuqur o‘rganilgan. 

Tadqiqotda chiziqli algebra, funksional tahlil va diskret matematika apparati 

yordamida massiv funksiyalarining nazariy asoslari ochib berilgan. Matritsali 

operatsiyalar, tensorli hisoblashlar, vektorli fazolar va funksiyalarning matematik 

xossalari tahlil qilingan. Maqolada massiv funksiyalarining komutativligi, 

assotsiativligi, distributivligi kabi algebraik xususiyatlari, ularning chiziqli va 

nochiziqli xarakteristikalari, konvergentsiya va barqarorlik masalalari tadqiq etilgan. 

Normalar, metrikalar va topoloji xususiyatlar orqali funksiyalarning sifat 

ko‘rsatkichlari baholangan. Tadqiqot natijalari dasturlashda qo‘llaniladigan 

algoritmlarga matematik asos yaratadi va nazariy asoslangan yondashuvni ta’minlaydi. 
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Abstract: This article deeply studies the mathematical structure, properties and 

analysis of functions defined for multidimensional arrays. The study reveals the 

theoretical foundations of array functions using the apparatus of linear algebra, 

functional analysis and discrete mathematics. Matrix operations, tensor calculations, 

vector spaces and mathematical properties of functions are analyzed. The article studies 

algebraic properties of array functions such as commutativity, associativity, 

distributivity, their linear and nonlinear characteristics, convergence and stability 

issues. The qualitative indicators of functions are evaluated through norms, metrics and 
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topological properties. The results of the study create a mathematical basis for 

algorithms used in programming and provide a theoretically based approach. 
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Kirish. Ko‘p o‘lchovli massivlar zamonaviy hisoblash matematikasining asosiy 

ob’ektlari hisoblanib, ular vektorlar, matritsalar va tensorlar sifatida matematik 

jihatdan tavsiflanadilar. Massiv funksiyalari esa bu matematik ob’ektlar ustida 

belgilangan operatorlar va transformatsiyalar majmuasini tashkil etadi. Matematik 

tahlil nuqtai nazaridan bu funksiyalarning xususiyatlarini o‘rganish nazariy va amaliy 

jihatdan muhim ahamiyatga ega. 

Massiv funksiyalarining matematik asoslarini tushunish bir nechta sohalarda 

muhim rol o‘ynaydi. Birinchidan, bu funksiyalarning to‘g‘ri ishlashini nazariy jihatdan 

asoslash imkonini beradi. Ikkinchidan, algoritmlarning konvergentsiyasi, barqarorligi 

va xatoliklarni boshqarish masalalarini hal qilishga yordam beradi. Uchinchidan, 

optimallashtirish va samaradorlikni oshirish uchun matematik aparatdan foydalanish 

mumkin bo‘ladi. 

Chiziqli algebra massiv funksiyalarining asosiy matematik apparati hisoblanadi. 

Vektorlar fazosidagi operatsiyalar, matritsali transformatsiyalar, xos qiymatlar va xos 

vektorlar nazariyasi, spektral tahlil kabi tushunchalar massiv funksiyalarini 

tushunishning matematik asosini tashkil etadi. Funksional tahlil esa norma, metrika, 

ichki ko‘paytma kabi tushunchalar orqali funksiyalar xususiyatlarini baholash 

imkonini beradi. 

Tensorli hisoblashlar yuqori o‘lchovli massivlar bilan ishlashda zarur bo‘lgan 

matematik apparatni taqdim etadi. Tensorlar vektorlar va matritsalarning 

umumlashtirilishi bo‘lib, ular ko‘p indeksli ob’ektlardir. Tensorli algebra, tensorlarni 

qisqartirish (contraction), tensorli ko‘paytma kabi operatsiyalar zamonaviy ilmiy 

hisoblashlar va sun’iy intellekt algoritmlarida keng qo‘llaniladi. 

Diskret matematika va kombinatorika massiv indekslash, elementlarni sanash va 

kombinatorial optimallash masalalarida qo‘llaniladi. Graf nazariyasi massiv 

tuzilmalarini tasvirlash va algoritmlarni tahlil qilishda foydalidir. Hisoblash 

murakkabligi nazariyasi algoritm samaradorligini matematik jihatdan baholash 

imkonini beradi. 

Tadqiqotning maqsadi ko‘p o‘lchovli massiv funksiyalarini matematik tahlil 

nuqtai nazaridan chuqur o‘rganish, ularning algebraik va topologik xususiyatlarini 

aniqlash, nazariy asoslarini yaratish va amaliy qo‘llanmalarga matematik asos 

berishdan iborat. Tadqiqot ob’ekti sifatida turli matematik strukturalar (vektorli 
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fazolar, normalik fazolar, Hilbert fazoлари) va ular ustida belgilangan massiv 

funksiyalari tanlab olingan. 

Asosiy qism 

Vektorli fazolar va massivlarning matematik modeli 

Ko‘p o‘lchovli massivlarni matematik jihatdan tavsiflash uchun vektorli fazolar 

nazariyasidan foydalaniladi. n o‘lchovli haqiqiy vektorli fazo R^n barcha n-o‘lchovli 

massivlar to‘plamini ifodalaydi. 

Vektorli fazo V maydon K (odatda haqiqiy sonlar R yoki kompleks sonlar C) 

ustida quyidagi aksiomalarga ega bo‘lgan to‘plamdir. Qo‘shish operatsiyasi uchun: u 

+ v = v + u (kommutativlik), (u + v) + w = u + (v + w) (assotsiativlik), nol vektor 0 

mavjud bo‘lib, v + 0 = v, har bir v uchun teskari element -v mavjud bo‘lib, v + (-v) = 

0. Skalyarga ko‘paytirish uchun: a(bv) = (ab)v, 1·v = v, a(u + v) = au + av (distributivlik 

vektorlar bo‘yicha), (a + b)v = av + bv (distributivlik skalyarlar bo‘yicha). 

m × n o‘lchovli matritsalar to‘plami M_{m,n}(R) ham vektorli fazoni tashkil etadi 

va uning o‘lchami mn ga teng. Bu fazoda har bir matritsa mn komponentli vektor 

sifatida qaralishi mumkin. Uch o‘lchovli massiv l × m × n o‘lchamli bo‘lsa, u R^{lmn} 

fazoning elementi hisoblanadi. 

Vektorli fazolarda asoslar tushunchasi muhim ahamiyatga ega. Asos - bu chiziqli 

erkli vektorlar to‘plami bo‘lib, har bir fazoning elementini ularning chiziqli 

kombinatsiyasi sifatida ifodalash mumkin. Standart asos e_1, e_2, ..., e_n vektorlaridan 

iborat bo‘lib, e_i vektorning i-koordinatasi 1 ga, qolganlari 0 ga teng. Har qanday 

vektor v = Σ_{i=1}^n v_i e_i ko‘rinishida yoziladi. 

Matritsalar uchun standart asos E_{ij} matritsalaridan iborat bo‘lib, bu 

matritsaning (i,j) elementи 1 ga, qolganlari 0 ga teng. Har qanday m × n matritsa A = 

Σ_{i=1}^m Σ_{j=1}^n a_{ij} E_{ij} ko‘rinishida ifodalanadi. Bu yozuv massiv 

operatsiyalarini chiziqli algebra tillida tavsiflash imkonini beradi. 

Chiziqli operatorlar va matritsali transformatsiyalar 

Massiv funksiyalarining ko‘pchiligi chiziqli operatorlar sifatida tavsiflanishi 

mumkin. Chiziqli operator T: V → W vektorli fazolar orasidagi xaritalash bo‘lib, 

quyidagi xossalarga ega: T(u + v) = T(u) + T(v) barcha u, v ∈ V uchun (additivlik), 

T(αv) = αT(v) barcha α ∈ K va v ∈ V uchun (bir jinslіlik). 

Chiziqli operatorning eng muhim namunasi matritsali transformatsiya 

hisoblanadi. Har qanday chiziqli operator T: R^n → R^m m × n matritsa A orqali 

ifodalanishi mumkin: T(x) = Ax. Bu tasvir o‘zaro bir qiymatli bo‘lib, chiziqli 

operatorlar va matritsalar o‘rtasida izomorfizm mavjud. 

Matritsali operatsiyalarning asosiy xususiyatlari quyidagilardan iborat. Qo‘shish 

operatsiyasi: (A + B)x = Ax + Bx va (A + B) + C = A + (B + C). Ko‘paytirish 

operatsiyasi: A(Bx) = (AB)x va (AB)C = A(BC). Distributivlik: A(B + C) = AB + AC 

va (A + B)C = AC + BC. Lekin kommutativlik umuman o‘rinli emas: AB ≠ BA. 
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Chiziqli operatorning yadrosi (kernel) yoki nol fazosi Ker(T) = {v ∈ V : T(v) = 

0} to‘plamidir. Tasvir fazosi Im(T) = {w ∈ W : ∃v ∈ V, T(v) = w} to‘plamidir. Agar 

T: R^n → R^m chiziqli operator bo‘lsa, ranglar teoremasi dim(Ker(T)) + dim(Im(T)) 

= n munosabatini beradi. Bu teorema massiv operatsiyalarining xususiyatlarini 

tushunishda muhim. 

Izomorfizm - bu chiziqli operator T: V → W bo‘lib, u o‘zaro bir qiymatli va 

barcha elementlarni qamrab oladi (bijeksiya). Agar izomorfizm mavjud bo‘lsa, V va 

W fazolari izomorf deyiladi: V ≅ W. Izomorf fazolar matematik jihatdan bir xil 

hisoblanadi. Masalan, R^{m×n} ≅ R^{mn}, ya’ni matritsalar fazosi va vektorlar fazosi 

izomorf. 

Norma va metrika tushunchalari 

Massiv funksiyalarining sifat ko‘rsatkichlarini baholash uchun norma va metrika 

tushunchalari qo‘llaniladi. Norma - bu vektorli fazo V da belgilangan funksiya ||·||: V 

→ R bo‘lib, quyidagi aksiomalarni qanoatlantiradi: ||v|| ≥ 0 va ||v|| = 0 ⟺ v = 0 

(nomanfiylik va aniqlik), ||αv|| = |α| ||v|| (bir jinslіlik), ||u + v|| ≤ ||u|| + ||v|| (uchburchak 

tengsizligi). 

Asosiy norma turlari quyidagilardan iborat. Evklid normasi (l₂-norma): ||x||₂ = √(Σᵢ 

xᵢ²), bu eng ko‘p qo‘llaniladigan norma. Maksimum norma (l∞-norma): ||x||∞ = max_i 

|xᵢ|. Manhattan normasi (l₁-norma): ||x||₁ = Σᵢ |xᵢ|. Umumiy p-norma: ||x||_p = (Σᵢ 

|xᵢ|^p)^{1/p}, bu yerda p ≥ 1. 

Matritsalar uchun maxsus normalar belgilanadi. Frobenius normasi: ||A||F = √(Σᵢⱼ 

aᵢⱼ²), bu Evklid normasining matritsalarga umumlashtirilishi. Spektral norma: ||A||₂ = 

σ_max(A), bu yerda σ_max - eng katta singular qiymat. Operator normasi: ||A|| = 

sup{||x||=1} ||Ax||, bu operatorning kuchlashish koeffitsientini ifodalaydi. 

Metrika - bu to‘plam X da belgilangan funksiya d: X × X → R bo‘lib, quyidagi 

aksiomalarni qanoatlantiradi: d(x,y) ≥ 0 va d(x,y) = 0 ⟺ x = y (nomanfiylik va aynan 

bir xillik aksiyomasi), d(x,y) = d(y,x) (simmetriya), d(x,z) ≤ d(x,y) + d(y,z) 

(uchburchak tengsizligi). 

Har qanday norma metrikani keltirib chiqaradi: d(x,y) = ||x - y||. Metrik fazo (X,d) 

topologik tushunchalar (yaqinlashish, uzluksizlik, ochiq to‘plamlar) uchun asos 

yaratadi. Massiv funksiyalarining barqarorligi va konvergentsiyasini o‘rganishda 

metrik fazolar muhim rol o‘ynaydi. 

Ichki ko‘paytma va Hilbert fazolari 

Ichki ko‘paytma norma tushunchasining kengaytirilishi bo‘lib, u ikkita vektor 

orasidagi burchakni va proyeksiyani aniqlash imkonini beradi. Ichki ko‘paytma - bu 

funksiya ⟨·,·⟩: V × V → K bo‘lib, quyidagi xossalarga ega: ⟨u,v⟩ = ⟨v,u⟩* (simmetriya 

yoki ermit xossasi, * kompleks qo‘shma), ⟨αu + βv, w⟩ = α⟨u,w⟩ + β⟨v,w⟩ (birinchi 

argumentda chiziqlilik), ⟨v,v⟩ ≥ 0 va ⟨v,v⟩ = 0 ⟺ v = 0 (musbat aniqlik). 
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Standart ichki ko‘paytma R^n da: ⟨x,y⟩ = Σᵢ xᵢyᵢ = x^T y. Matritsalar uchun: ⟨A,B⟩ 

= tr(A^T B) = Σᵢⱼ aᵢⱼbᵢⱼ, bu yerda tr - iz (trace) funksiyasi. Har qanday ichki ko‘paytma 

norma keltirib chiqaradi: ||v|| = √⟨v,v⟩. Ichki ko‘paytma orqali aniqlangan norma 

qo‘shimcha xossaga ega: parallelogramm identifikatsiyasi ||u + v||² + ||u - v||² = 2(||u||² 

+ ||v||²). 

Koshi-Bunyakovskiy-Shvarts tengsizligi ichki ko‘paytmaning fundamental 

xossasi: |⟨u,v⟩| ≤ ||u|| ||v||. Tenglik faqat u va v chiziqli bog‘liq bo‘lganda o‘rinli. Bu 

tengsizlik ko‘plab matematik isbotlarda va baholarда qo‘llaniladi. 

Ikkita vektor ortogonal deyiladi, agar ⟨u,v⟩ = 0 bo‘lsa. Ortonormal asos - bu o‘zaro 

ortogonal va normasi 1 ga teng vektorlar to‘plami: ⟨eᵢ,eⱼ⟩ = δᵢⱼ, bu yerda δᵢⱼ - Kroneker 

deltasi. Ortonormal asosda har qanday vektor v = Σᵢ ⟨v,eᵢ⟩ eᵢ ko‘rinishida yoziladi va 

||v||² = Σᵢ |⟨v,eᵢ⟩|² (Parseval identifikatsiyasi). 

Hilbert fazosi - bu to‘liq ichki ko‘paytma fazosi, ya’ni har bir Koshi ketma-ketligi 

yaqinlashuvchi. R^n va matritsalar fazosi chekli o‘lchovli Hilbert fazolari hisoblanadi. 

Hilbert fazolarida proyeksiya teoremasi, ortogonal yoyilma, Riesz tasviri kabi muhim 

teoremalar o‘rinli bo‘lib, ular massiv funksiyalarini tahlil qilishda qo‘llaniladi. 

Xos qiymatlar va spektral tahlil 

Kvadrat matritsa A: R^n → R^n uchun xos qiymat λ va xos vektor v (v ≠ 0) 

quyidagi tenglamani qanoatlantiradi: Av = λv. Xos qiymat matritsaning vektor 

yo‘nalishini qanday o‘zgartirishini ko‘rsatadi: vektor faqat cho‘ziladi yoki siqiladi, 

lekin yo‘nalishi saqlanadi. 

Xos qiymatlarni topish uchun xarakteristik tenglama yechiladi: det(A - λI) = 0, bu 

yerda I - birlik matritsa. Bu n-darajali algebraik tenglama bo‘lib, n ta xos qiymat 

(ko‘pliklarni hisobga olgan holda) beradi. Xos vektorlar (A - λI)v = 0 tizimini yechish 

orqali topiladi. 

Simmetrik haqiqiy matritsalar muhim xususiyatlarga ega. Barcha xos qiyatlar 

haqiqiy, barcha xos vektorlar o‘zaro ortogonal, matritsa diagonal 

ko‘rinishga keltirilishi mumkin: A = QΛQ^T, bu yerda Q - ortogonal matritsa (xos 

vektorlardan tashkil topgan), Λ - diagonal matritsa (xos qiymatlardan). Bu spektral 

yoyilma (spectral decomposition) deyiladi. 

Spektral teorema simmetrik matritsalar uchun quyidagicha: Agar A simmetrik 

matritsa bo‘lsa, u holda A = Σᵢ λᵢ vᵢvᵢ^T, bu yerda λᵢ - xos qiyatlar, vᵢ - ortonormal xos 

vektorlar. Bu yoyilma matritsani bir o‘lchovli proyeksiyalarning chiziqli 

kombinatsiyasi sifatida ifodalaydi. 

Singular qiymatlarga ajratish (SVD) har qanday m × n matritsa A uchun: A = 

UΣV^T, bu yerda U - m × m ortogonal matritsa, Σ - m × n diagonal matritsa (singular 

qiymatlar σᵢ bilan), V - n × n ortogonal matritsa. SVD matritsali tahlilning eng universal 

vositasi bo‘lib, ko‘plab qo‘llanmalarga ega: psevdoteskari matritsa, rang topish, 

ma’lumotlarni siqish, tasvirlarni qayta ishlash. 
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Singular qiymatlar matritsaning muhim xarakteristikalarini beradi. Eng katta 

singular qiymat spektral normaga teng: ||A||₂ = σ_max. Singular qiymatlar soni matritsa 

rangiga teng: rank(A) = #{σᵢ : σᵢ ≠ 0}. Singular qiymatlarning ko‘paytmasi 

determinantning absolyut qiymatiga teng: |det(A)| = Πᵢ σᵢ. 

Matritsali funksiyalar va ularning xususiyatlari 

Matritsali funksiyalar - bu matritsalarni matritsalarga akslantiruvchi xaritalashlar. 

Ko‘plab matritsali funksiyalar skalyar funksiyalarning umumlashtirilishi hisoblanadi. 

Matritsa eksponentasi: exp(A) = Σ_{k=0}^∞ A^k/k! = I + A + A²/2! + A³/3! + ... 

Bu qator har doim yaqinlashadi va ko‘plab xossalarga ega: exp(0) = I, exp(A + B) = 

exp(A)exp(B) (faqat AB = BA bo‘lganda), d/dt exp(tA) = A exp(tA). 

Agar A = QΛQ^{-1} diagonal ko‘rinishga keltirilsa, u holda exp(A) = Q exp(Λ) 

Q^{-1}, bu yerda exp(Λ) = diag(e^{λ₁}, e^{λ₂}, ..., e^{λₙ}). Bu formula eksponentani 

hisoblashni soddalashtiradi. 

Matritsa logarifmi: log(A) faqat musbat aniq matritsalar uchun yaxshi aniqlangan. 

Agar A = QΛQ^T simmetrik va musbat aniq bo‘lsa, log(A) = Q log(Λ) Q^T. Logaritm 

va eksponent teskari operatsiyalar: log(exp(A)) = A va exp(log(A)) = A (mos shartlar 

bajarilganda). 

Matritsa daraja funksiyasi: A^p turli usullarda aniqlanishi mumkin. Agar p butun 

musbat son bo‘lsa, A^p = A · A · ... · A (p marta). Agar p = 1/2, A^{1/2} matritsa 

ildizi: (A^{1/2})² = A. Umumiy holda, A^p = exp(p log(A)) orqali aniqlanadi. Spektral 

yoyilma yordamida: A^p = Q Λ^p Q^T, bu yerda Λ^p = diag(λ₁^p, λ₂^p, ..., λₙ^p). 

Matritsa normasi ham matritsali funksiya hisoblanadi. Determinant det: M_n(R) 

→ R multilinear va antisimmetrik funksiya. Iz funksiyasi tr: M_n(R) → R chiziqli 

funksiya: tr(A + B) = tr(A) + tr(B), tr(αA) = α tr(A). Muhim xossa: tr(AB) = tr(BA), 

bu siklik o‘zgarmas deyiladi. 

Tensorlar va ko‘p chiziqli algebra 

Tensorlar - bu vektorlar va matritsalarning yuqori o‘lchovli umumlashtirilishi. 

Matematik jihatdan, (p,q)-tartibli tensor p marta kontrvariant va q marta kovariant ko‘p 

chiziqli xaritalash hisoblanadi. 

Oddiy tilda, n o‘lchovli tensorni n-indeksli son massivi sifatida tasavvur qilish 

mumkin. 0-tartibli tensor - skalar, 1-tartibli tensor - vektor, 2-tartibli tensor - matritsa, 

3-tartibli tensor - kub shaklida massiv va hokazo. 

Tensorli ko‘paytma (tensor product) ikkita tensor T₁ ⊗ T₂ ni birlashtirish 

operatsiyasi. Vektorlar uchun: (u ⊗ v){ij} = u_i v_j, bu rang-1 matritsa hosil qiladi. 

Umumiy holda: (T₁ ⊗ T₂){i₁...i_p j₁...j_q} = (T₁){i₁...i_p} (T₂){j₁...j_q}. 

Tensorlarni qisqartirish (contraction) - indekslar bo‘yicha yig‘ish operatsiyasi. 

Matritsalarning izi - bu 2-tartibli tensorning qisqarishi: tr(A) = Σᵢ Aᵢᵢ. Matritsalarni 

ko‘paytirish ham qisqartirish orqali ifodalanadi: (AB)_{ik} = Σⱼ Aᵢⱼ Bⱼₖ. 
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Tensorlarning rangi muhim tushuncha hisoblanadi. Tensorning rangi - uni rank-1 

tensorlarning yig‘indisi sifatida ifodalash uchun zarur bo‘lgan minimal hadlar soni. 

Matritsalar uchun bu oddiy rang tushunchasiga mos keladi: rank(A) = min{r : A = Σᵢ₌₁ʳ 

uᵢvᵢ^T}. Yuqori o‘lchovli tensorlar uchun rang tushunchasi murakkabroq. 

Tensorlarni ajratish (tensor decomposition) ko‘plab qo‘llanmalarga ega. CP 

ajratishi (CANDECOMP/PARAFAC): T ≈ Σᵢ₌₁ʳ a_i ⊗ b_i ⊗ c_i. Tucker ajratishi: T 

≈ G ×₁ A ×₂ B ×₃ C, bu yerda G - yadro tensor. Bu ajratishlar ma’lumotlarni siqish, 

namunalarni aniqlash va signallarni qayta ishlashda qo‘llaniladi. 

Chiziqli tenglamalar tizimi va yechish usullari 

Chiziqli tenglamalar tizimi Ax = b ko‘rinishida yoziladi, bu yerda A - m × n 

matritsa, x - noma’lum vektor, b - o‘ng tomon. Bu tizimning yechiluvchanligini tahlil 

qilish massiv funksiyalarining muhim jihati. 

Tizim yechiluvchanligining shartlari quyidagicha. Agar rank(A) = rank([A|b]) 

bo‘lsa, tizim mos keladi (yechim mavjud). Agar rank(A) = n bo‘lsa, yechim yagonadir. 

Agar rank(A) < n bo‘lsa, cheksiz ko‘p yechim mavjud. Agar rank(A) ≠ rank([A|b]) 

bo‘lsa, tizim mos kelmaydi (yechim yo‘q). 

To‘g‘ri ranggi tizimlar (n = m va rank(A) = n) uchun yagona yechim mavjud: x = 

A^{-1}b. Teskari matritsa Gauss usuli, LU ajratishi yoki boshqa usullar bilan 

hisoblanadi. 

Noto‘g‘ri tizimlar (m > n) uchun eng kichik kvadratlar usuli qo‘llaniladi. Maqsad: 

||Ax - b||₂ ni minimallash. Normal tenglamalar: A^T Ax = A^T b. Yechim: x = (A^T 

A)^{-1} A^T b = A^† b, bu yerda A^† - psevdoteskari (Moore-Penrose) matritsa. 

Noaniq tizimlar (m < n) uchun minimal norma yechimi topiladi. Maqsad: ||x||₂ ni 

minimallash, Ax = b sharti bilan. Yechim: x = A^T(AA^T)^{-1}b = A^† b. 

Psevdoteskari matritsa umumiy holda SVD orqali hisoblanadi: A^† = VΣ^†U^T, bu 

yerda Σ^† - Σ ning psevdoteskari (nolga bo‘linish muammosi yo‘q). 

Iterativ usullar katta tizimlar uchun samaraliroq. Yakobiy usuli: x^{(k+1)} = D^{-

1}(b - (L+U)x^{(k)}), bu yerda A = D + L + U (diagonal, pastki va yuqori uchburchak). 

Gauss-Zeydel usuli: x^{(k+1)} = (D+L)^{-1}(b - Ux^{(k)}). Gradient tushish va 

qo‘shma gradientlar usuli simmetrik musbat aniq matritsalar uchun juda samarali. 

Norma bahosi va xatoliklar tahlili 

Raqamli hisoblashlarda xatoliklar tahlili muhim ahamiyatga ega. Xatoliklar ikki 

turga bo‘linadi: yaxlitlash xatoliklari (rounding errors) va qisqartirish xatoliklari 

(truncation errors). 

Absolyut xatolik: Δx = |x̃ - x|, bu yerda x - aniq qiymat, x̃ - taqribiy qiymat. Nisbiy 

xatolik: δx = |x̃ - x|/|x|. Vektorlar uchun: ||Δx|| va ||Δx||/||x||. Matritsalar uchun ham xuddi 

shunday. 

Sharti raqami (condition number) masalaning xatoliklarga sezgirligini o‘lchaydi. 

Chiziqli tizim Ax = b uchun: κ(A) = ||A|| ||A^{-1}||. Agar κ(A) katta bo‘lsa, tizim 
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noto‘g‘ri shaklda qo‘yilgan (ill-conditioned). Agar κ(A) kichik bo‘lsa, tizim to‘g‘ri 

shaklda qo‘yilgan (well-conditioned). 

Nisbiy xatoliklarning tarqalishi: ||Δx||/||x|| ≤ κ(A) (||ΔA||/||A|| + ||Δb||/||b||). Bu 

formula ko‘rsatadiki, agar κ(A) katta bo‘lsa, kirishdagi kichik xatolik chiqishdagi katta 

xatolikka olib kelishi mumkin. 

Barqarorlik - algoritmning xatoliklar ta’siriga chidamliligи. Barqaror algoritm 

kichik kirishdagi xatolikni kichik chiqishdagi xatolikka olib keladi. Nobarqaror 

algoritm xatoliklarni kuchaytiradi. Masalan, oddiy Gauss usuli nobarqaror bo‘lishi 

mumkin, lekin ustun element tanlash (pivoting) bilan barqaror bo‘ladi. 

Yaxlitlash xatolarini tahlil qilish uchun orqaga tahlil (backward error analysis) 

qo‘llaniladi. G‘oya: taqribiy yechim x̃ ni qabul qilish o‘rniga, x̃ qaysi muammoning 

aniq yechimi ekanligini topish. Masalan, x̃ = (A + E)^{-1}b bo‘lsa, ||E|| qanchalik 

kichik? 

Konvergentsiya va iterativ algoritmlar 

Ko‘plab massiv funksiyalari iterativ algoritmlar orqali amalga oshiriladi. 

Konvergentsiya tahlili bu algoritmlarning ishlashini tushunish uchun zarur. 

Ketma-ketlik {x^{(k)}} x* ga yaqinlashadi, agar har qanday ε > 0 uchun N 

mavjud bo‘lib, k > N bo‘lganda ||x^{(k)} - x*|| < ε. Konvergentsiya tezligi muhim 

xarakteristika hisoblanadi. 

Chiziqli konvergentsiya: ||x^{(k+1)} - x*|| ≤ C||x^{(k)} - x*||, bu yerda 0 < C < 1. 

Kvadratik konvergentsiya: ||x^{(k+1)} - x*|| ≤ C||x^{(k)} - x*||². Kvadratik 

konvergentsiya chiziqli konvergentsiyadan ancha tezroq. 

Iterativ matritsa G = I - M^{-1}A (bu yerda M - prekonditsioner) spektral radiusi 

ρ(G) = max_i |λᵢ(G)| konvergentsiyani belgilaydi. Iterativ usul yaqinlashadi ⟺ ρ(G) < 

1. Konvergentsiya tezligi -log(ρ(G)) ga proporsional. 

Gradientli usullar uchun konvergentsiya tezligi sharti raqamiga bog‘liq. 

Gradientli tushish: x^{(k+1)} = x^{(k)} - α∇f(x^{(k)}). Agar f(x) = ½x^T Ax - b^T x 

kvadratik funksiya bo‘lsa, optimal qadam α = 1/λ_max(A) va konvergentsiya tezligi 

(κ(A)-1)/(κ(A)+1). 

Konjugat gradientlar usuli yuqoriroq konvergentsiya tezligiga ega. Nazariy 

jihatdan, n o‘lchovli musbat aniq tizim uchun ko‘pi bilan n iteratsiyada aniq yechim 

topiladi. Amalda, ||x^{(k)} - x*|| ≤ 2((√κ - 1)/(√κ + 1))^k ||x^{(0)} - x*||. 

Optimallash va ekstremumlar 

Ko‘plab massiv funksiyalari optimallash masalalarini yechadi. Matematikda 

optimallashtirish - bu funksiyaning ekstremumini (maksimum yoki minimum) topish. 

Cheklanmagan optimallash: min_x f(x), bu yerda f: R^n → R silliq funksiya. 

Zaruriy shart (birinchi tartibli): ∇f(x*) = 0 (kritik nuqta). Yetarli shart (ikkinchi 

tartibli): Hessian matritsa H = ∇²f(x*) musbat aniq bo‘lsa, x* mahalliy minimum. 
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Konveks funksiyalar uchun mahalliy minimum global minimum hisoblanadi. 

Funksiya f konveks, agar f(λx + (1-λ)y) ≤ λf(x) + (1-λ)f(y) barcha x, y va 0 ≤ λ ≤ 1 

uchun. Ekvivalent shart: Hessian matritsasi musbat yarimo‘q (positive semidefinite). 

Kvadratik optimallash: min_x ½x^T Ax - b^T x, bu yerda A simmetrik musbat 

aniq. Yechim: x* = A^{-1}b, bu chiziqli tizimni yechish bilan topiladi. Agar A musbat 

yarimo‘q bo‘lsa, yechim yagona bo‘lmasligi mumkin. 

Cheklangan optimallash: min_x f(x), g(x) = 0 va h(x) ≤ 0 shartlar bilan. Lagranj 

funksiyasi: L(x,λ,μ) = f(x) + λ^T g(x) + μ^T h(x). Karush-Kuhn-Taker (KKT) shartlari: 

∇_x L = 0, g(x) = 0, h(x) ≤ 0, μ ≥ 0, μ^T h(x) = 0. 

Konveks optimallash uchun samarali algoritmlar mavjud. Gradientli tushish, 

Nyuton usuli, ichki nuqta usullari polinomial vaqtda yechim topadi. Nokonveks 

optimallashda lokal minimumlar muammosi mavjud, lekin zamonaviy usullar 

(stoxastik gradiyent, momentum) amalda yaxshi ishlaydi. 

Matritsa faktorizatsiyalari 

Matritsa faktorizatsiyasi - bu matritsani bir nechta maxsus matritsalar ko‘paytmasi 

sifatida ifodalash. Bu ko‘plab hisoblashlarni soddalashtiради va tezlashtiradi. 

LU faktorizatsiya: A = LU, bu yerda L - pastki uchburchak matritsa (lower 

triangular), U - yuqori uchburchak matritsa (upper triangular). Bu faktorizatsiya Gauss 

usuli jarayonini ifodalaydi. Chiziqli tizimni yechish ikki bosqichga bo‘linadi: Ly = b 

(oldinga almashtirish) va Ux = y (orqaga almashtirish). Vaqt murakkabligi: O(n³) 

faktorizatsiya uchun, O(n²) har bir yechim uchun. 

Cholesky faktorizatsiyasi simmetrik musbat aniq matritsalar uchun: A = LL^T, 

bu yerda L - pastki uchburchak matritsa. Bu LU faktorizatsiyaning maxsus holi bo‘lib, 

ikki baravar kam xotira va hisoblash talab qiladi. Vaqt murakkabligi: O(n³/3), bu LU 

dan ikki baravar tezroq. 

QR faktorizatsiya: A = QR, bu yerda Q - ortogonal matritsa (Q^T Q = I), R - 

yuqori uchburchak matritsa. Bu faktorizatsiya eng kichik kvadratlar masalasini 

yechishda va xos qiyatlarni topishda qo‘llaniladi. QR faktorizatsiya Gram-Schmidt 

ortogonallashtirish, Householder aks ettirish yoki Givens aylanish orqali hisoblanadi. 

SVD (Singular Value Decomposition): A = UΣV^T - eng universal faktorizatsiya. 

U psevdoteskari matritsa, rang aniqlash, ma’lumotlarni siqish, Principal Component 

Analysis (PCA) kabi ko‘plab qo‘llanmalarga ega. SVD ni hisoblash O(mn²) yoki 

O(m²n) vaqt talab qiladi (m va n ning qaysi biri kichikligiga bog‘liq). 

Differensial va variatsion hisoblash 

Ko‘plab massiv funksiyalari differensiallanadi va ularning hosilalari optimallash 

va tahlilda muhim rol o‘ynaydi. 

Vektor funksiyaning hosilasi - bu Jacobian matritsasi J. Agar f: R^n → R^m 

bo‘lsa, J_{ij} = ∂f_i/∂x_j. Maxsus holat: n = 1 bo‘lganda, J gradient vektoriga aylanadi: 

∇f = (∂f/∂x₁, ..., ∂f/∂x_n)^T. Ikkinchi hosila Hessian matritsasi: H_{ij} = ∂²f/∂x_i∂x_j. 
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Zanjir qoidasi kompozitsiya uchun: Agar h = g ∘ f bo‘lsa, Dh = Dg · Df 

(matritsalarni ko‘paytirish). Bu qoida orqaga tarqalish (backpropagation) algoritmi 

asosida yotadi, bu neyron tarmoqlarni o‘qitishda qo‘llaniladi. 

Matritsali differensial hisoblash murakkabchiroq. Agar f: M_n(R) → R matritsa 

funksiyasi bo‘lsa, ∂f/∂A - bu matritsali hosila. Misollar: ∂(tr(A))/∂A = I, ∂(tr(A²))/∂A 

= 2A, ∂(det(A))/∂A = det(A)·A^{-T}. 

Funktionallar - bu funksiyalarni haqiqiy sonlarga akslantiruvchi xaritalashlar. 

Variatsion hosila δF/δf - bu funktsionalning f ga nisbatan hosilasi. Masalan, agar F[f] 

= ∫ ||f||² dx bo‘lsa, δF/δf = 2f. Variatsion hisoblash optimal funktsiyalarni topishda 

qo‘llaniladi. 

Raqamli barqarorlik va shart raqami 

Raqamli hisoblashlarda barqarorlik muhim xususiyat hisoblanadi. Barqaror 

algoritm xatoliklarni kontrol ostida saqlaydi, nobarqaror algoritm esa xatoliklarni 

kuchaytiradi. 

Shart raqami κ(A) matritsaning xatoliklarga sezgirligini o‘lchaydi. 2-norma 

uchun: κ₂(A) = ||A||₂ ||A^{-1}||₂ = σ_max/σ_min (eng katta va eng kichik singular 

qiymatlarning nisbati). Agar κ(A) ≈ 10^k bo‘lsa, taqriban k ta raqam aniqligini 

yo‘qotish mumkin. 

Murakkab hisoblashlarda xatoliklar to‘planadi. Agar N ta operatsiya bajarilsa va 

har birining xatoligi ε bo‘lsa, umumiy xatolik √N · ε tartibida bo‘ladi (statistik 

mustaqillik taxminida). Shuning uchun, ko‘p operatsiyali algoritmlar uchun yuqori 

aniqlik kerak. 

Yaxlitlash tahlili quyidagi savollarga javob beradi. Taqribiy yechim x̃ qaysi 

muammoning aniq yechimi? fl(x ⊕ y) = (x + y)(1 + δ), bu yerda |δ| ≤ ε_machine. 

Umumiy xatolikni baholar: ||x̃ - x*|| ≤ f(κ(A), n, ε_machine), bu yerda f - ma’lum 

funksiya. 

Prekonditsionerlash sharti raqamini yaxshilash usuli. G‘oya: M^{-1}Ax = M^{-

1}b yechish, bu yerda M - Ag preconditioner hisoblanib, κ(M^{-1}A) < κ(A). Yaxshi 

prekonditsioner tanlash iterativ usullarning konvergentsiyasini sezilarli tezlashtiradi. 

Xulosa 

Ko‘p o‘lchovli massiv funksiyalarining matematik tahlili chuqur va ko‘p qirrali 

tadqiqot mavzusi ekanligi aniqlandi. Ushbu tadqiqot natijasida quyidagi asosiy 

xulosalarga kelamiz. 

Vektorli fazolar nazariyasi massiv funksiyalarining asosiy matematik tuzilmasini 

ta’minlaydi. Massivlar vektorli fazolar elementlari sifatida qaralishi mumkin va bu 

nuqtai nazardan barcha chiziqli algebra apparati qo‘llaniladi. Asos tushunchasi, 

chiziqli erklilik, o‘lcham kabi fundamental tushunchalar massiv operatsiyalarini 

tushunish uchun zarur. 

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 55



Chiziqli operatorlar va matritsali transformatsiyalar massiv funksiyalarining 

ko‘pchiligini matematik jihatdan tavsiflaydi. Har bir chiziqli massiv funksiyasi 

matritsa bilan ifodalanishi mumkin va bu tasvir ikki tomonlama. Yadrosi, tasviri, rang 

kabi tushunchalar funksiyaning xususiyatlarini to‘liq tavsiflaydi. 

Norma va metrika tushunchalari massiv funksiyalarining sifat ko‘rsatkichlarini 

baholash uchun asosiy vositadir. Turli normalar (Evklid, maksimum, Frobenius) turli 

xususiyatlarni ta’kidlaydi. Metrik fazolarda yaqinlashish, uzluksizlik va barqarorlik 

tushunchalari aniq matematikasiga ega bo‘ladi. 

Ichki ko‘paytma va Hilbert fazolari geometrik tushunchalarni joriy qiladi. 

Ortogonallik, proyeksiya, burchak tushunchalari ko‘plab algoritmlar uchun asosdir. 

Koshi-Bunyakovskiy-Shvarts tengsizligi va parallelogramm identifikatsiyasi muhim 

matematik vositalar hisoblanadi. 

Xos qiyatlar va spektral tahlil matritsalarning chuqur xususiyatlarini ochib beradi. 

Spektral yoyilma simmetrik matritsalarni tushunishning asosi bo‘lib, ko‘plab 

qo‘llanmalarga ega. Singular qiymatlarga ajratish (SVD) har qanday matritsa uchun 

universal va kuchli vosita hisoblanadi. 

Tensorlar va ko‘p chiziqli algebra yuqori o‘lchovli massivlar uchun 

matematikasini taqdim etadi. Tensorli ko‘paytma, qisqartirish va ajratish operatsiyalari 

zamonaviy ma’lumotlar tahlili va sun’iy intellektda keng qo‘llaniladi. Tensorlarning 

rangi va tuzilmasi hali ham faol tadqiqot sohasidir. 

Chiziqli tenglamalar tizimi va yechish usullari ko‘plab massiv funksiyalarining 

asosida yotadi. Tizimning yechiluvchanlik shartlari, yagona yechim mavjudligi, 

psevdoteskari matritsa tushunchalari amaliy jihatdan juda muhim. Iterativ usullar katta 

tizimlar uchun samaraliroq va ularning konvergentsiya tahlili matematik jihatdan 

qiziqarli. 

Norma bahosi va xatoliklar tahlili raqamli hisoblashlarning ishonchliligini 

ta’minlaydi. Sharti raqami masalaning noto‘g‘ri qo‘yilganligini aniqlaydi. Orqaga 

tahlil xatoliklarning tarqalishini tushunishga yordam beradi. Barqarorlik algoritm 

tanlovida asosiy mezonlardan biridir. 

Konvergentsiya va iterativ algoritmlar tahlili ko‘plab massiv funksiyalarining 

amaliy qo‘llanilishini ta’minlaydi. Konvergentsiya tezligi, spektral radius, 

prekonditsionerlash kabi tushunchalar samarali algoritmlar yaratish uchun zarur. 

Chiziqli va kvadratik konvergentsiya o‘rtasidagi farq juda muhim. 

Optimallash va ekstremumlar nazariyasi ko‘plab massiv funksiyalarining 

maqsadini ifodalaydi. Konveks optimallash samarali yechiladigan masalalar sinfini 

beradi. KKT shartlari cheklangan optimallash uchun zaruriy va (ba’zi shartlarda) 

yetarli. Hessian matritsasi ekstremum turini aniqlaydi. 

Matritsa faktorizatsiyalari hisoblashlarni tezlashtirish va soddalashtirishning 

asosiy usuli hisoblanadi. LU, Cholesky, QR, SVD faktorizatsiyalari turli maqsadlar 
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uchun mo‘ljallangan. Har birining o‘z afzalliklari, kamchiliklari va qo‘llanish sohalari 

mavjud. 

Ushbu tadqiqot ko‘rsatdiki, massiv funksiyalarining matematik tahlili nafaqat 

nazariy jihatdan qiziqarli, balki amaliy dasturlash uchun ham juda foydalidir. 

Matematik asoslarni tushunish samarali, barqaror va optimallashtirilgan algoritmlar 

yaratish imkonini beradi. 
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