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Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlar uchun belgilangan 

funksiyalarning analitik va raqamli xususiyatlari kompleks tadqiq qilingan. Tadqiqot 
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hisoblash algoritmlari, xatoliklar tahlili va barqarorlik masalalari chuqur o‘rganilgan. 

Maqolada chiziqli va nochiziqli funksiyalarning differensial xususiyatlari, 

konvergentsiya shartlari, raqamli integratsiya va differensiatsiya usullari tahlil 

qilingan. Massiv funksiyalarining approksimatsiya xatoliklari, yaxlitlash muammolari, 

hisoblash murakkabligi va optimallash strategiyalari batafsil ko‘rib chiqilgan. Tadqiqot 

natijalari zamonaviy hisoblash texnologiyalarida qo‘llaniladigan massiv 

operatsiyalariga nazariy va amaliy asos yaratadi, shuningdek, samarali va aniq raqamli 

algoritmlar ishlab chiqish uchun yo‘l-yo‘riq beradi. 
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Abstract: This article comprehensively studies the analytical and numerical 

properties of functions defined for multidimensional arrays. During the research, 

analytical descriptions of functions, mathematical modeling, numerical calculation 

algorithms, error analysis and stability issues were studied in depth. The article 

analyzes the differential properties of linear and nonlinear functions, convergence 

conditions, numerical integration and differentiation methods. Approximation errors, 

rounding problems, computational complexity and optimization strategies of array 

functions are considered in detail. The research results create a theoretical and practical 

basis for array operations used in modern computing technologies, and also provide 

guidance for the development of efficient and accurate numerical algorithms. 
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Kirish. Ko‘p o‘lchovli massivlar zamonaviy hisoblash matematikasining asosiy 

tuzilmalari bo‘lib, ular ustida belgilangan funksiyalar nazariy va amaliy jihatdan keng 

tadqiq etilishi zarur. Analitik va raqamli xususiyatlar bu funksiyalarning ikki muhim 

tomonini ifodalaydi: analitik xususiyatlar matematikasiy qonuniyatlarni, raqamli 

xususiyatlar esa kompyuterda amalga oshirilish jihatlarini tavsiflaydi. 

Analitik tahlil funksiyalarning matematik strukturasini, ularning davomliligini, 

differensiallanishini, integratsiya qobiliyatini va boshqa matematik xossalarini 

o‘rganadi. Bu nazariy asoslar algoritmlarning to‘g‘riligini isbotlash, optimal 

yechimlarni topish va matematik teoremalar qo‘llash imkonini beradi. Analitik 

funksiyalar - kompleks o‘zgaruvchili funksiyalar bo‘lib, ular ko‘p o‘lchovli 

massivlarda maxsus rol o‘ynaydi. 

Raqamli tahlil esa bu funksiyalarni chekli aniqlikdagi kompyuterda qanday 

hisoblash, qanday xatoliklarga yo‘l qo‘yilishi, qanday murakkablikka ega ekanligi kabi 

amaliy savollarni o‘rganadi. Raqamli metodlar analitik yechim topib bo‘lmaydigan 

masalalarni taqribiy yechish imkonini beradi. Suzuvchi nuqta arifmetikasi, yaxlitlash 

xatoliklari, hisoblash barqarorligi kabi masalalar raqamli tahlilning asosiy 

yo‘nalishlarini tashkil etadi. 

Massiv funksiyalarining analitik va raqamli xususiyatlarini birga o‘rganish bir 

necha sabablarga ko‘ra muhimdir. Birinchidan, analitik xossalar raqamli algoritmlarni 

tanlash va loyihalashda asos bo‘ladi. Ikkinchidan, raqamli cheklovlar analitik 

natijalarning amaliy qo‘llanilishini belgilaydi. Uchinchidan, bu ikki yondashuv 

birgalikda samarali va aniq hisoblash usullarini yaratishga imkon beradi. 

Zamonaviy ilmiy hisoblashlarda, ma’lumotlar tahlilida va sun’iy intellektda 

massiv funksiyalarining roli tobora ortib bormoqda. Katta hajmdagi ma’lumotlar bilan 

ishlash, murakkab modellarni o‘qitish, real vaqtda qaror qabul qilish kabi vazifalar 

samarali massiv operatsiyalarini talab qiladi. Shuning uchun, bu funksiyalarning 

analitik va raqamli xususiyatlarini to‘liq tushunish zarurati paydo bo‘ladi. 

Tadqiqotning maqsadi ko‘p o‘lchovli massiv funksiyalarining analitik va raqamli 

xususiyatlarini sistemali ravishda o‘rganish, ularning o‘zaro bog‘liqligini aniqlash, 

xatoliklar manbalarini tahlil qilish va optimal hisoblash strategiyalarini ishlab 

chiqishdan iborat. Tadqiqot ob’ekti sifatida turli turdagi massiv funksiyalari (chiziqli, 

nochiziqli, differensiallanuvchi, integral) va ularning hisoblash xususiyatlari tanlab 

olingan. 

Asosiy qism 
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Analitik funksiyalar nazariyasi va massivlarga tatbiqi 

Analitik funksiyalar kompleks tahlilning asosiy ob’ekti bo‘lib, ular har bir 

nuqtada kompleks differensiallanuvchi funksiyalardir. Funksiya f(z) sohada analitik 

deyiladi, agar u bu sohaning har bir nuqtasida kompleks differensiallanuvchi bo‘lsa. 

Kompleks differensiallanish Koshi-Riman shartlari bilan aniqlanadi. 

Agar f(z) = u(x,y) + iv(x,y) bo‘lib, z = x + iy bo‘lsa, Koshi-Riman shartlari 

quyidagicha: ∂u/∂x = ∂v/∂y va ∂u/∂y = -∂v/∂x. Bu shartlar bajarilganda funksiya 

analitikdir. Analitik funksiyalarning muhim xossalari mavjud: ular cheksiz marta 

differensiallanuvchi, darajali qatorga yoyilishi mumkin, konform akslantirish hosil 

qiladi. 

Ko‘p o‘lchovli massivlarda analitik funksiyalar yoyilmasi muhim ahamiyatga 

ega. Teylor qatori: f(z) = Σ_{n=0}^∞ aₙ(z - z₀)ⁿ, bu yerda aₙ = f^(n)(z₀)/n!. Bu yoyilma 

funksiyani polinomlar yig‘indisi sifatida ifodalash imkonini beradi va raqamli 

hisoblashlarda approksimatsiya uchun ishlatiladi. 

Loran qatori yakka nuqtalar atrofida funksiyani yoyish imkonini beradi: f(z) = 

Σ_{n=-∞}^∞ aₙ(z - z₀)ⁿ. Bu yoyilma murakkabroq funksiyalarni tavsiflashda 

qo‘llaniladi. Residuum teoremasi integral hisoblashda muhim rol o‘ynaydi va massiv 

integratsiyalarini hisoblashda ishlatilishi mumkin. 

Ko‘p o‘zgaruvchili analitik funksiyalar f(z₁, z₂, ..., zₙ) har bir o‘zgaruvchi bo‘yicha 

alohida analitik bo‘lishi kerak. Gartogs teoremasi shuni ko‘rsatadiki, agar funksiya har 

bir o‘zgaruvchi bo‘yicha alohida analitik bo‘lsa, u barcha o‘zgaruvchilar bo‘yicha 

birgalikda analitikdir. Bu teorema ko‘p o‘lchovli massiv funksiyalarini tahlil qilishda 

muhim. 

Differensial hisoblash va massiv hosilalari 

Differensial hisoblash massiv funksiyalarining o‘zgarish tezligini o‘rganadi. Bitta 

o‘zgaruvchili funksiya hosilasi f’(x) = lim_{h→0} [f(x+h) - f(x)]/h orqali aniqlanadi. 

Ko‘p o‘zgaruvchili funksiyalar uchun qisman hosilalar mavjud: ∂f/∂xᵢ - faqat xᵢ 

o‘zgaruvchisi bo‘yicha hosila. 

Gradient vektori ∇f = (∂f/∂x₁, ∂f/∂x₂, ..., ∂f/∂xₙ)ᵀ funksiyaning eng tez o‘sish 

yo‘nalishini ko‘rsatadi. Gradientning kattaligi ||∇f|| o‘sish tezligini, yo‘nalishi esa qaysi 

tomonga eng tez o‘sishni bildiradi. Gradient nolga teng bo‘lgan nuqtalar kritik nuqtalar 

deyiladi va ekstremumlar bu nuqtalarda joylashadi. 

Hessian matritsasi H ikkinchi tartibli qisman hosilalardan tashkil topgan: Hᵢⱼ = 

∂²f/∂xᵢ∂xⱼ. Bu matritsa funksiyaning egriligini tavsiflaydi. Agar H musbat aniq bo‘lsa, 

funksiya konveksdir. Agar H manfiy aniq bo‘lsa, funksiya konkavdir. Hessian 

matritsasi xos qiymatlari egrilik yo‘nalishlarini va intensivligini beradi. 

Yakobian matritsasi vektor funksiya f: Rⁿ → Rᵐ uchun Jᵢⱼ = ∂fᵢ/∂xⱼ orqali 

aniqlanadi. Bu matritsa chiziqli approksimatsiyani beradi: f(x + Δx) ≈ f(x) + J(x)Δx. 
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Yakobianniig determinanti hajm o‘zgarishini ko‘rsatadi va koordinatalar o‘zgarishida 

ishlatiladi. 

Zanjir qoidasi kompozitsiya hosilasini hisoblash uchun: agar h = g ∘ f bo‘lsa, 

Dh(x) = Dg(f(x)) · Df(x). Bu qoida neyron tarmoqlarda orqaga tarqalish 

(backpropagation) algoritmining asosida yotadi. Avtomatik differentsiatsiya 

zamonaviy dasturlash kutubxonalarida (TensorFlow, PyTorch) zanjir qoidasini 

avtomatik qo‘llaydi. 

Yo‘nalish bo‘yicha hosila D_v f(x) = ∇f(x) · v funksiyaning v yo‘nalishda 

o‘zgarish tezligini beradi. Maksimal qiymat ||∇f(x)|| bo‘lib, bu gradient yo‘nalishida 

erishiladi. Kontur chiziqlari ∇f ga perpendikulyar yo‘nalishlarda joylashgan. 

Raqamli differentsiatsiya usullari 

Analitik hosilalarni hisoblash har doim ham mumkin emas, shuning uchun 

raqamli differentsiatsiya usullari qo‘llaniladi. Oldinga farq (forward difference): f’(x) 

≈ [f(x+h) - f(x)]/h. Bu eng oddiy usul bo‘lib, xatoligi O(h) tartibida. 

Orqaga farq (backward difference): f’(x) ≈ [f(x) - f(x-h)]/h. Bu ham O(h) 

xatolikka ega. Markaziy farq (central difference): f’(x) ≈ [f(x+h) - f(x-h)]/(2h). Bu 

aniqroq bo‘lib, xatoligi O(h²) tartibida. 

Yuqori tartibli hosilalar uchun: f’’(x) ≈ [f(x+h) - 2f(x) + f(x-h)]/h². Bu ikkinchi 

hosila uchun markaziy farq formulasi bo‘lib, xatoligi O(h²) tartibida. Uchinchi va 

yuqori hosilalar ham shunga o‘xshash formulalar bilan hisoblanadi. 

Qadam uzunligi h ni tanlash muhim masala. Agar h juda kichik bo‘lsa, yaxlitlash 

xatoliklari ortadi. Agar h juda katta bo‘lsa, approksimatsiya xatoligi ortadi. Optimal h 

≈ √ε tartibida, bu yerda ε - mashinali aniqlik (odatda 10⁻¹⁶). Amalda h ≈ 10⁻⁸ tanlash 

ko‘pincha yaxshi natija beradi. 

Kompleks qadam differentsiatsiyasi yuqori aniqlik beradi: f’(x) ≈ Im[f(x + ih)]/h, 

bu yerda i - xayoliy birlik. Bu usulning xatoligi O(h²) bo‘lib, lekin yaxlitlash 

xatoliklaridan kam ta’sirlanadi. Sababi, ayirish operatsiyasi yo‘q va shu sababli 

katastrofik qisqarish muammosi yuzaga kelmaydi. 

Ko‘p o‘zgaruvchili funksiyalar uchun gradient quyidagicha hisoblanadi: ∂f/∂xᵢ ≈ 

[f(x + heᵢ) - f(x - heᵢ)]/(2h), bu yerda eᵢ - i-yo‘nalishdagi birlik vektor. Hessian matritsasi 

uchun: ∂²f/∂xᵢ∂xⱼ ≈ [f(x+heᵢ+heⱼ) - f(x+heᵢ-heⱼ) - f(x-heᵢ+heⱼ) + f(x-heᵢ-heⱼ)]/(4h²). 

Avtomatik differentsiatsiya (AD) aniq hosilalarni hisoblashning zamonaviy usuli. 

Oldinga rejim (forward mode) zanjir qoidasini chapdan o‘ngga qo‘llaydi va bir 

o‘zgaruvchi bo‘yicha hosilani samarali hisoblaydi. Orqaga rejim (reverse mode) 

o‘ngdan chapga qo‘llaydi va ko‘p o‘zgaruvchilar bo‘yicha hosilani samarali 

hisoblaydi. Backpropagation orqaga rejim AD ning maxsus holi hisoblanadi. 

Integral hisoblash va raqamli integratsiya 

Integral hisoblash massiv funksiyalarining yig‘indisini va o‘rtacha qiymatini 

topish uchun ishlatiladi. Aniq integral ∫ₐᵇ f(x)dx funksiyaning [a,b] oraliqda ostidagi 
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yuzani beradi. Nyuton-Leybnis formulasi: ∫ₐᵇ f(x)dx = F(b) - F(a), bu yerda F - f ning 

boshlang‘ich funksiyasi. 

Ko‘p o‘lchovli integrallar ketma-ket yoki takroriy integrallar sifatida hisoblanadi: 

∬_D f(x,y)dxdy = ∫_a^b [∫_c^d f(x,y)dy]dx. Fubini teoremasi integratsiya tartibini 

o‘zgartirish imkonini beradi (ma’lum shartlar ostida). 

Raqamli integratsiya (kvadratura) integral qiymatini taqribiy hisoblash usullari 

majmuasi. To‘g‘ri to‘rtburchaklar usuli: ∫ₐᵇ f(x)dx ≈ h Σᵢ f(xᵢ), bu yerda h = (b-a)/n va 

xᵢ = a + ih. Bu eng oddiy usul bo‘lib, xatoligi O(h) tartibida. 

Trapetsiya usuli: ∫ₐᵇ f(x)dx ≈ h[f(a)/2 + Σᵢ₌₁ⁿ⁻¹ f(xᵢ) + f(b)/2]. Bu usul chiziqli 

interpolyatsiyaga asoslangan va xatoligi O(h²) tartibida. Simpson usuli kvadratik 

interpolyatsiyaga asoslangan: ∫ₐᵇ f(x)dx ≈ (h/3)[f(a) + 4Σ(toq i) f(xᵢ) + 2Σ(juft i) f(xᵢ) + 

f(b)]. Bu usulning xatoligi O(h⁴) tartibida va odatda aniqroq. 

Gauss kvadraturasi eng samarali usullardan biri. n ta nuqtada 2n-1 darajali 

polinomlarni aniq integrallaydi. Gauss-Lejandre kvadraturasi: ∫₋₁¹ f(x)dx ≈ Σᵢ wᵢf(xᵢ), 

bu yerda xᵢ - Lejandre polinomlarining ildizlari, wᵢ - og‘irliklar. Umumiy oraliq uchun 

koordinatalar o‘zgarishi qo‘llaniladi. 

Ko‘p o‘lchovli integrallar uchun Monte-Karlo usullari samarali. G‘oya: tasodifiy 

nuqtalarda funksiya qiymatlarini hisoblash va o‘rtachani topish. ∫_D f(x)dx ≈ V(D)/N 

Σᵢ₌₁ᴺ f(xᵢ), bu yerda V(D) - soha hajmi, xᵢ - tasodifiy nuqtalar. Xatolik O(1/√N) tartibida 

bo‘lib, o‘lchamga bog‘liq emas - bu yuqori o‘lchovlarda katta afzallik. 

Adaptiv integratsiya xatolikni baholash va kerakli joylarda nuqtalar sonini 

oshirish orqali aniqlikni oshiradi. Algoritm oraliqni kichik qismlarga bo‘ladi va har bir 

qismda xatolikni tekshiradi. Agar xatolik katta bo‘lsa, qism yanada kichikroq 

bo‘laklarga bo‘linadi. Bu usul funksiya silliq bo‘lmagan joylarda samarali. 

Interpolyatsiya va approksimatsiya nazariyasi 

Interpolyatsiya - berilgan nuqtalardagi qiymatlari ma’lum bo‘lgan funksiyani 

tiklash masalasi. n ta nuqta (x₀, y₀), (x₁, y₁), ..., (xₙ₋₁, yₙ₋₁) berilgan bo‘lsa, P(xᵢ) = yᵢ 

shartni qanoatlantiruvchi polinom P topiladi. 

Lagranj interpolyatsiya polinomi: P(x) = Σᵢ₌₀ⁿ⁻¹ yᵢ Lᵢ(x), bu yerda Lᵢ(x) = Πⱼ≠ᵢ (x - 

xⱼ)/(xᵢ - xⱼ) - Lagranj bazis polinomlari. Bu polinom yagona va darajasi n-1 dan 

oshmaydigan polinom. Hisoblash murakkabligi O(n²). 

Nyuton interpolyatsiya polinomi: P(x) = a₀ + a₁(x-x₀) + a₂(x-x₀)(x-x₁) + ... Bu shakl 

yangi nuqta qo‘shilganda samarali. Koeffitsientlar bo‘lingan farqlar orqali hisoblanadi: 

aᵢ = f[x₀, x₁, ..., xᵢ], bu yerda f[x₀, x₁, ..., xᵢ] - i-tartibli bo‘lingan farq. 

Interpolyatsiya xatoligi: agar f funksiya n marta uzluksiz differensiallanuvchi 

bo‘lsa, |f(x) - P(x)| ≤ M/n! |Πᵢ₌₀ⁿ⁻¹(x - xᵢ)|, bu yerda M = max |f^(n)(ξ)|. Bu formula 

xatolikni baholash imkonini beradi. 

Runge hodisasi yuqori darajali polinomlar bilan interpolyatsiyada yuzaga keladi. 

Teng oraliqli nuqtalarda yuqori darajali polinom chetlarda katta tebranishlarga ega 
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bo‘ladi. Yechiм: Chebishev nuqtalaridan foydalanish yoki piecewise interpolyatsiya 

(bo‘lakli interpolyatsiya). 

Splayn interpolyatsiyasi bo‘lakli polinom interpolyatsiyasi bo‘lib, oraliqni kichik 

qismlarga bo‘ladi va har bir qismda past darajali polinom ishlatadi. Kubik splayn - eng 

keng tarqalgan tur bo‘lib, har bir bo‘lakda 3-darajali polinom. Shart: funksiya va uning 

birinchi va ikkinchi hosilalari uzluksiz. 

Ko‘p o‘lchovli interpolyatsiya murakkabbroq. Bilinear interpolyatsiya to‘rt nuqta 

asosida: f(x,y) ≈ a₀₀ + a₁₀x + a₀₁y + a₁₁xy. Bicubic interpolyatsiya 16 ta nuqta va 

hosilalar ma’lumotlaridan foydalanadi, natija silliqroq bo‘ladi. Yuqori o‘lchovlarda 

tensorli ko‘paytma usullari qo‘llaniladi. 

Approksimatsiya va eng yaxshi yaqinlashish 

Approksimatsiya - funksiyani oddiyroq funksiyalar bilan yaqinlashtirish. Maqsad: 

||f - g|| ni minimallash, bu yerda g - approksimatsiyalovchi funksiya. Turli normalar 

turli approksimatsiyalarni beradi. 

Eng kichik kvadratlar usuli L₂ normasida approksimatsiya: min Σᵢ (f(xᵢ) - g(xᵢ))². 

Agar g polinomlar fazosidan tanlansa, normal tenglamalar sistemasi hosil bo‘ladi. 

Yechim chiziqli algebraik tizimni yechish orqali topiladi. Bu usul statistik tahlilda 

regressiya deyiladi. 

Chebishev approksimatsiyasi L∞ normasida approksimatsiya: min max_x |f(x) - 

g(x)|. Bu minimax approksimatsiya deyiladi va eng yomon holatda ham minimal 

xatolikni ta’minlaydi. Remez algoritmi Chebishev approksimatsiyasini hisoblaydi. 

Fourier qatori davriy funksiyalarni approksimatsiya qiladi: f(x) ≈ a₀/2 + Σₖ₌₁ⁿ 

[aₖcos(kx) + bₖsin(kx)]. Koeffitsientlar integral orqali hisoblanadi: aₖ = (1/π) ∫₋π^π 

f(x)cos(kx)dx. Tez Fourier transformatsiyasi (FFT) bu koeffitsientlarni O(n log n) 

vaqtda hisoblaydi. 

Veyvlet approksimatsiyasi lokal xususiyatlarni yaxshi ushlaydi. Veyvletlar - 

kichik to‘lqinlar bo‘lib, ular cho‘ziladi va siljiydi. Veyvlet yoyilmasi: f(x) = Σⱼ,ₖ cⱼ,ₖ 

ψⱼ,ₖ(x), bu yerda ψⱼ,ₖ - asosiy veyvletlarning cho‘zilgan va siljigan versiyalari. 

Veyvletlar tasvirlarni siqish va signallarni qayta ishlashda keng qo‘llaniladi. 

Ratsional approksimatsiya polinomlar nisbati bilan: R(x) = P(x)/Q(x). Pade 

approksimatsiyasi Teylor qatorining ratsional o‘xshashi bo‘lib, katta oraliqda yaxshi 

ishlaydi. Ayniqsa, qutblarga ega funksiyalar uchun foydali. 

Xatoliklar tahlili va barqarorlik 

Raqamli hisoblashlarda xatoliklar muqarrar. Xatoliklarni tahlil qilish va 

boshqarish raqamli tahlilning asosiy vazifasi. Xatoliklar uch asosiy turga bo‘linadi: 

model xatoliklari (fizik hodisani matematik model bilan approksimatsiya), 

ma’lumotlar xatoliklari (o‘lchash xatoliklari), hisoblash xatoliklari (raqamli usullar va 

yaxlitlash). 
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Absolyut xatolik Δx = |x̃ - x|, bu yerda x - aniq qiymat, x̃ - taqribiy qiymat. Nisbiy 

xatolik δx = |x̃ - x|/|x| xatolikni qiymatga nisbatan o‘lchaydi. Amalda aniq qiymat 

noma’lum bo‘ladi va xatolikni baholash kerak. 

Yaxlitlash xatoliklari suzuvchi nuqta arifmetikasidan kelib chiqadi. Har bir son 

chekli aniqlikda saqlanadi. IEEE 754 standart: float (32 bit, 7-8 ta o‘nlik raqam), 

double (64 bit, 15-16 ta o‘nlik raqam). Mashinali epsilon εₘₐcₕᵢₙₑ - 1 + ε > 1 bo‘ladigan 

eng kichik ε. 

Operatsiyalar xatoliklari: fl(x ⊕ y) = (x ⊕ y)(1 + δ), bu yerda |δ| ≤ εₘₐcₕᵢₙₑ va ⊕ 

∈ {+, -, ×, /}. Katastrofik qisqarish yaqin sonlarni ayirishda yuzaga keladi va nisbiy 

xatolikni katta oshiradi. Masalan, agar x ≈ y bo‘lsa, x - y da nisbiy xatolik katta bo‘ladi. 

Xatoliklarning tarqalishi: agar y = f(x) bo‘lsa va x da Δx xatolik bo‘lsa, y da Δy ≈ 

|f’(x)| Δx xatolik yuzaga keladi. Ko‘p o‘zgaruvchili funksiya uchun: Δf ≈ Σᵢ |∂f/∂xᵢ| Δxᵢ. 

Bu formula xatoliklar qanday to‘planishini ko‘rsatadi. 

Barqarorlik - algoritmning xatoliklarga chidamliligि . Barqaror algoritm kichik 

kirishdagi xatolikni kichik chiqishdagi xatolikka olib keladi. Nobarqaror algoritm 

xatoliklarni kuchaytiradi. Orqaga barqarorlik: taqribiy yechim x̃ qaysi muammoning 

aniq yechimi? Agar x̃ - (A + E)^{-1}(b + δb) va ||E||, ||δb|| kichik bo‘lsa, algoritm 

orqaga barqaror. 

Sharti raqami κ muammoning xatoliklarga sezgirligini o‘lchaydi. Yaxshi shaklda 

qo‘yilgan muammolar (well-conditioned) κ ≈ 1 ga ega. Noto‘g‘ri shaklda qo‘yilgan 

muammolar (ill-conditioned) κ ≫ 1 ga ega. Chiziqli tizim uchun: κ(A) = ||A|| ||A⁻¹||, 

xatolik kuchayishi κ(A) tartibida bo‘ladi. 

Konvergentsiya tahlili va tezligi 

Ketma-ketlikning konvergentsiyasi - limitga yaqinlashish. Ketma-ketlik {xₖ} x* 

ga yaqinlashadi, agar lim_{k→∞} ||xₖ - x*|| = 0 bo‘lsa. Konvergentsiya tezligi muhim 

xarakteristika: tezroq yaqinlashish kamroq iteratsiya talab qiladi. 

Chiziqli konvergentsiya: ||xₖ₊₁ - x*|| ≤ C||xₖ - x*||, bu yerda 0 < C < 1. Xatolik har 

iteratsiyada C marta kamayadi. C ga konvergentsiya koeffitsiyenti deyiladi. Qanchalik 

kichik bo‘lsa, shunchalik tez yaqinlashadi. 

Kvadratik konvergentsiya: ||xₖ₊₁ - x*|| ≤ C||xₖ - x*||². Xatolik kvadratik kamayadi 

- juda tez. Masalan, agar ||x₁ - x*|| = 10⁻², ||x₂ - x*|| ≈ 10⁻⁴, ||x₃ - x*|| ≈ 10⁻⁸. Nyuton usuli 

kvadratik konvergentsiyaga ega. 

Yuqori tartibli konvergentsiya: ||xₖ₊₁ - x*|| ≤ C||xₖ - x*||^p, p > 2. Bunday 

konvergentsiya superchiziqli yoki kubik (p=3) deyiladi. Amalda p=2 dan yuqori 

kamdan-kam uchraydi. 

Nyuton usuli f(x) = 0 tenglamani yechadi: xₖ₊₁ = xₖ - f(xₖ)/f’(xₖ). Oddiy ildiz 

yaqinida kvadratik konvergentsiyaga ega. Ko‘p o‘lchovli holda: xₖ₊₁ = xₖ - [J(xₖ)]⁻¹ 

f(xₖ), bu yerda J - Yakobian matritsasi. 

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 64



Gradientli tushish optimallash uchun: xₖ₊₁ = xₖ - α∇f(xₖ). Konveks funksiya uchun 

chiziqli konvergentsiya. Tezlik sharti raqamiga bog‘liq: ρ ≈ (κ-1)/(κ+1). Agar κ katta 

bo‘lsa, konvergentsiya sekin. 

Qadam α ni tanlash muhim. Juda katta α - divergentsiya. Juda kichik α - sekin 

konvergentsiya. Chiziq bo‘ylab qidiruv (line search) optimal α ni topadi. Adaptiv 

usullar (Adam, RMSprop) α ni avtomatik sozlaydi. 

Konjugat gradientlar usuli kvadratik funktsiyalar uchun n iteratsiyada aniq 

yechim topadi (nazariy jihatdan). Amalda, yaxlitlash xatoliklari tufayli ko‘proq 

iteratsiya kerak bo‘lishi mumkin. Ammo, Nyuton usuliga nisbatan Yakobianm 

hisoblash kerak emas. 

Raqamli chiziqli algebra algoritmlari 

Chiziqli tizim Ax = b ni yechish ko‘plab massiv funksiyalarining asosida yotadi. 

Gauss usuli - eng klassik usul. Forward elimination (oldinga yo‘qotish): A ni yuqori 

uchburchak shaklga keltirish. Backward substitution (orqaga almashtirish): yechimni 

topish. Vaqt murakkabligi: O(n³). 

Ustun element tanlash (partial pivoting) barqarorlikni oshiradi. Har bir qadamda 

eng katta absolyut qiymatli elementni tanlash. To‘liq element tanlash (complete 

pivoting) eng barqaror, lekin sekinroq. Amalda qisman element tanlash yetarli. 

LU faktorizatsiya: A = LU, bu yerda L - pastki uchburchak, U - yuqori 

uchburchak. Bir marta faktorizatsiya qilgandan keyin, turli b lar uchun tizimni tez 

yechish mumkin: Ly = b, keyin Ux = y. Bu ko‘p o‘ng tomonli tizimlar uchun samarali. 

Cholesky faktorizatsiyasi simmetrik musbat aniq matritsalar uchun: A = LL^T. 

Faqat L ni saqlash kerak - xotira tejash. Hisoblash LU dan ikki baravar tezroq. Raqamli 

barqarorlik yaxshi - musbat aniqlik kafolati. 

Iterativ usullar katta siyrak matritsalar uchun samaraliroq. Yakobiy usuli: 

x^{(k+1)} = D^{-1}(b - (L+U)x^{(k)}). Gauss-Zeydel usuli: yangilangan qiymatlarni 

darhol ishlatadi, tezroq yaqinlashadi. SOR (Successive Over-Relaxation): relaksatsiya 

parametri ω bilan tezlashtirish. 

Konjugat gradientlar (CG) simmetrik musbat aniq tizimlar uchun eng samarali 

iterativ usul. Krylov kichik fazosida ishlaydi. Nazariy jihatdan n iteratsiyada aniq 

yechim. Amalda, ε aniqlikka erishish uchun O(√κ log(1/ε)) iteratsiya kerak. 

Prekonditsionerlash konvergentsiyani tezlashtirish uchun: M^{-1}Ax = M^{-1}b 

yechish, bu yerda κ(M^{-1}A) < κ(A). Yaxshi prekonditsioner: hisoblash arzon, sharti 

raqamini sezilarli kamaytiradi. Incomplete LU, Jacobi, SSOR - keng tarqalgan 

prekonditionerlar. 

GMRES (Generalized Minimal Residual) nosimmetrik tizimlar uchun. Krylov 

kichik fazosida minimal residuum prinsipiga asoslangan. Xotira talabi katta - restart 

strategiyasi bilan kamaytiriladi. BiCGSTAB - muqobil usul, kamroq xotira, lekin 

kamroq barqaror. 
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Xos qiymatlar va singular qiymatlarni hisoblash 

Xos qiymatlar masalasi: Av = λv. Bu nosimmetrik tizim, oddiy chiziqli tizimdan 

murakkabroq. To‘g‘ridan-to‘g‘ri usullar (analitik formula) faqat kichik matritsalar (n 

≤ 4) uchun amaliy. 

Quvvat usuli (Power method) eng katta absolyut qiymatli xos qiymatni topadi. 

Algoritm: v^{(k+1)} = Av^{(k)}/||Av^{(k)}||. Konvergentsiya tezligi |λ₂/λ₁| ga bog‘liq. 

Agar λ₁ ≫ λ₂ bo‘lsa, tez yaqinlashadi. 

Teskari iteratsiya eng kichik xos qiymatni topadi: (A - σI)^{-1} ga quvvat usulini 

qo‘llash. Agar σ ≈ λ bo‘lsa, juda tez konvergentsiya (Rayleigh quotient iteration bilan 

kombinatsiyalanganda kvadratik). 

QR algoritmi barcha xos qiyatlarni topadi. Algoritm: A₀ = A, Aₖ = QₖRₖ (QR 

faktorizatsiya), Aₖ₊₁ = RₖQₖ. Ketma-ketlik {Aₖ} Schur shaklga yaqinlashadi (yuqori 

uchburchak yoki kvaziuchburchak). Diagonalda xos qiyatlar. Vaqt murakkabligi: O(n³) 

har bir iteratsiya, O(n) iteratsiya kerak. 

Hessenberg shaklga keltirish oldindan qo‘llaniladi: QAQ^T = H, bu yerda H - 

Hessenberg matritsasi (pastki uchburchakka yaqin). Hessenberg matritsada QR 

iteratsiyasi O(n²) vaqt talab qiladi. Umumiy murakkablik: O(n³) boshlang‘ich keltirish 

+ O(n³) iteratsiyalar. 

Singular qiymatlar masalasi: A = UΣV^T. To‘g‘ridan-to‘g‘ri hisoblash: A^T A va 

AA^T ning xos qiyatlarini topish. Lekin A^T A sharti raqami κ(A)² bo‘ladi - 

barqarorlik muammosi. Yaxshiroq: Golub-Kahan bidiagonalizatsiyasi. 

Bidiagonal shaklga keltirish: U₀^T A V₀ = B, bu yerda B - bidiagonal (ikki 

diagonal). Keyin B ga iterativ usul (QR yoki divide-and-conquer) qo‘llaniladi. 

Umumiy murakkablik: O(mn²) yoki O(m²n) (m va n dan kichigi). 

Truncated SVD katta matritsalar uchun faqat bir nechta eng katta singular 

qiymatlarni topadi. Lanczos yoki Arnoldi iteratsiyalari Krylov kichik fazosida ishlaydi. 

Randomized SVD tasodifiy proyeksiyalar orqali tezlashtiradi - ma’lumotlar tahlilida 

mashhur. 

Optimallash algoritmlari va ularning konvergentsiyasi 

Optimallash - funksiyaning ekstremumini topish. Cheklanmagan optimallash: 

min_x f(x). Birinchi tartibli usullar faqat gradient ishlatadi, ikkinchi tartibli usullar 

Hessian ham ishlatadi. 

Gradientli tushish (Gradient Descent): x^{(k+1)} = x^{(k)} - α_k ∇f(x^{(k)}). 

Eng oddiy usul, katta miqyosli muammolar uchun mos. Konvergentsiya tezligi sharti 

raqamiga bog‘liq. Konveks funksiya uchun chiziqli konvergentsiya. 

Chiziq bo‘ylab qidiruv (Line search) optimal qadamni topadi: α_k = argmin_α 

f(x^{(k)} - α∇f(x^{(k)})). Aniq chiziq qidiruvi qimmat, taxminiy usullar (Armijo, 

Wolfe shartlari) amaliy. 
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Momentum usuli oldingi yo‘nalishlarni hisobga oladi: v^{(k+1)} = βv^{(k)} - 

α∇f(x^{(k)}), x^{(k+1)} = x^{(k)} + v^{(k+1)}. Tebranishlarni kamaytiradi, 

konvergentsiyani tezlashtiradi. Nesterov momentum yanada yaxshiroq. 

Adaptiv usullar har bir parametr uchun alohida qadam: AdaGrad, RMSprop, 

Adam. Adam - eng mashhur, birinchi va ikkinchi momentlarni hisobga oladi. Chuqur 

o‘rganishda standart tanlov. 

Nyuton usuli ikkinchi tartibli: x^{(k+1)} = x^{(k)} - [H(x^{(k)})]^{-

1}∇f(x^{(k)}). Kvadratik konvergentsiya, lekin Hessian hisoblash va invertsiya 

qimmat (O(n³)). Kichik masalalar uchun mos. 

Kvazi-Nyuton usullari Hessian teskari approksimatsiyasini saqlab yangilaydi: 

B_{k+1} ≈ [H(x^{(k)})]^{-1}. BFGS - eng mashhur kvazi-Nyuton usuli. Superchiziqli 

konvergentsiya, O(n²) xotira. Limited-memory BFGS (L-BFGS) faqat so‘nggi bir 

nechta yangilanishni saqlaydi - katta masalalar uchun. 

Konjugat gradientlar optimallash uchun: yo‘nalishlar konjugat (Hessian bo‘yicha 

ortogonal). Kvadratik funksiya uchun n iteratsiyada yechim. Nochiziqli funksiyalar 

uchun nonlinear CG variantlari (Fletcher-Reeves, Polak-Ribiere). 

Stoxastik gradiyent tushish (SGD) katta ma’lumotlar to‘plamlarida: gradient 

approksimatsiyasini kichik mini-batch da hisoblash. Har bir iteratsiya arzon, lekin 

shovqinli. Mini-batch hajmi va learning rate schedule muhim giperparametrlar. 

Xulosa 

Ko‘p o‘lchovli massiv funksiyalarining analitik va raqamli xususiyatlarini tadqiq 

qilish natijasida quyidagi asosiy xulosalarga kelamiz. 

Analitik funksiyalar nazariyasi massiv operatsiyalarining nazariy asosini tashkil 

etadi. Koshi-Riman shartlari, Teylor va Loran qatorlari, Gartogs teoremasi kabi 

tushunchalar ko‘p o‘lchovli funksiyalarning xususiyatlarini tushunishga yordam 

beradi. Analitiklik xossasi ko‘plab matematik teoremalar va usullarni qo‘llash 

imkonini beradi. 

Differensial hisoblash massiv funksiyalarining mahalliy xususiyatlarini 

o‘rganadi. Gradient, Hessian va Yakobian matritsalari funksiyaning o‘zgarish tezligini, 

egriligini va chiziqli approksimatsiyasini beradi. Zanjir qoidasi murakkab 

kompozitsiyalarning hosilalarini hisoblash imkonini beradi va zamonaviy chuqur 

o‘rganishda asosiy rol o‘ynaydi. 

Raqamli differentsiatsiya analitik hosilalar mavjud bo‘lmagan hollarda 

qo‘llaniladi. Oldinga, orqaga va markaziy farqlar turli aniqlik darajalarini beradi. 

Qadam uzunligini to‘g‘ri tanlash approksimatsiya va yaxlitlash xatoliklarini 

muvozanatlash uchun muhim. Avtomatik differentsiatsiya zamonaviy yondashuv 

bo‘lib, aniq hosilalarni samarali hisoblaydi. 

Integral hisoblash va raqamli integratsiya massiv funksiyalarining global 

xususiyatlarini o‘rganadi. Trapetsiya, Simpson va Gauss kvadraturalari turli aniqlik va 
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murakkablikka ega. Ko‘p o‘lchovli integrallar uchun Monte-Karlo usullari yuqori 

o‘lchovlarda samarali. Adaptiv integratsiya xatolikni boshqarish imkonini beradi. 

Interpolyatsiya va approksimatsiya funksiyalarni oddiyroq funksiyalar bilan 

yaqinlashtiradi. Lagranj va Nyuton polinomlari, kubik splaynlar, Fourier qatori, 

veyvlet yoyilmasi turli vazifalar uchun mos. Eng kichik kvadratlar va Chebishev 

approksimatsiyalari turli optimallash mezonlarini qo‘llaydi. 

Xatoliklar tahlili va barqarorlik raqamli hisoblashlarning ishonchliligini 

ta’minlaydi. Absolyut va nisbiy xatoliklar, yaxlitlash xatoliklari, katastrofik qisqarish, 

sharti raqami kabi tushunchalar algoritmlarni tanlash va loyihalashda muhim. Orqaga 

barqarorlik algoritm sifatini baholash uchun qo‘llaniladi. 

Konvergentsiya tahlili iterativ algoritmlarning samaradorligini o‘lchaydi. 

Chiziqli, kvadratik va yuqori tartibli konvergentsiya tezligi algoritm tanlashda asosiy 

mezon. Nyuton usuli, gradientli tushish, konjugat gradientlar kabi usullarning 

konvergentsiya xususiyatlari yaxshi o‘rganilgan. 

Raqamli chiziqli algebra algoritmlari ko‘plab massiv operatsiyalarining asosida 

yotadi. Gauss usuli, LU va Cholesky faktorizatsiyalari, iterativ usullar (Yakobiy, 

Gauss-Zeydel, CG, GMRES) turli vazifalar va matritsa xususiyatlari uchun mos. 

Prekonditsionerlash konvergentsiyani sezilarli tezlashtiradi. 

Xos qiymatlar va singular qiymatlarni hisoblash spektral tahlil uchun zarur. 

Quvvat usuli, QR algoritmi, Golub-Kahan bidiagonalizatsiyasi turli aniqlik va 

murakkablikka ega. Truncated va randomized usullar katta matritsalar uchun samarali. 

Optimallash algoritmlari ekstremumlarni topishda qo‘llaniladi. Birinchi tartibli 

usullar (gradientli tushish va variantlari) katta miqyosli muammolar uchun mos. 

Ikkinchi tartibli usullar (Nyuton, kvazi-Nyuton) tezroq yaqinlashadi, lekin qimmatroq. 

Stoxastik usullar katta ma’lumotlar to‘plamlari uchun zarur. 

Umumiy xulosa: massiv funksiyalarining analitik xususiyatlari nazariy asos 

yaratadi, raqamli xususiyatlar esa amaliy qo‘llanishni ta’minlaydi. Bu ikki yondashuv 

birgalikda samarali, aniq va barqaror hisoblash algoritmlarini yaratish imkonini beradi. 
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