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Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning
analitik va raqamli xususiyatlarini tadqiq qilish

Gulbodom Oybek qizi Norqulova
BXU

Annotatsiya: Ushbu maqolada ko‘p oflchovli massivlar uchun belgilangan
funksiyalarning analitik va raqamli xususiyatlari kompleks tadqiq qilingan. Tadqiqot
davomida funksiyalarning analitik tavsiflari, matematikasiy modellashtirish, ragamli
hisoblash algoritmlari, xatoliklar tahlili va barqarorlik masalalari chuqur o‘rganilgan.
Magqolada chiziqli va nochizigli funksiyalarning differensial xususiyatlari,
konvergentsiya shartlari, raqamli integratsiya va differensiatsiya usullari tahlil
qilingan. Massiv funksiyalarining approksimatsiya xatoliklari, yaxlitlash muammolari,
hisoblash murakkabligi va optimallash strategiyalari batafsil ko‘rib chiqilgan. Tadqiqot
natijjalari  zamonaviy  hisoblash  texnologiyalarida qo‘llaniladigan  massiv
operatsiyalariga nazariy va amaliy asos yaratadi, shuningdek, samarali va aniq ragamli
algoritmlar ishlab chiqish uchun yo‘l-yo‘riq beradi.

Kalit so‘zlar: analitik xususiyatlar, ragamli metodlar, hisoblash algoritmlari,
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raqamli integratsiya, yaxlitlash xatoliklari

Research on analytical and numerical properties of functions
defined in multidimensional arrays
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BIU

Abstract: This article comprehensively studies the analytical and numerical
properties of functions defined for multidimensional arrays. During the research,
analytical descriptions of functions, mathematical modeling, numerical calculation
algorithms, error analysis and stability issues were studied in depth. The article
analyzes the differential properties of linear and nonlinear functions, convergence
conditions, numerical integration and differentiation methods. Approximation errors,
rounding problems, computational complexity and optimization strategies of array
functions are considered in detail. The research results create a theoretical and practical
basis for array operations used in modern computing technologies, and also provide
guidance for the development of efficient and accurate numerical algorithms.
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Kirish. Ko‘p o‘Ichovli massivlar zamonaviy hisoblash matematikasining asosiy
tuzilmalari bo‘lib, ular ustida belgilangan funksiyalar nazariy va amaliy jihatdan keng
tadqiq etilishi zarur. Analitik va ragamli xususiyatlar bu funksiyalarning ikki muhim
tomonini ifodalaydi: analitik xususiyatlar matematikasiy qonuniyatlarni, ragamli
xususiyatlar esa kompyuterda amalga oshirilish jihatlarini tavsiflaydi.

Analitik tahlil funksiyalarning matematik strukturasini, ularning davomliligini,
differensiallanishini, integratsiya qobiliyatini va boshga matematik xossalarini
o‘rganadi. Bu nazariy asoslar algoritmlarning to‘g‘riligini isbotlash, optimal
yechimlarni topish va matematik teoremalar qo‘llash imkonini beradi. Analitik
funksiyalar - kompleks o‘zgaruvchili funksiyalar bo‘lib, ular ko‘p o‘lchovli
massivlarda maxsus rol o‘ynaydi.

Raqamli tahlil esa bu funksiyalarni chekli aniqlikdagi kompyuterda qanday
hisoblash, qanday xatoliklarga yo‘l qo‘yilishi, qanday murakkablikka ega ekanligi kabi
amaliy savollarni o‘rganadi. Ragamli metodlar analitik yechim topib bo‘lmaydigan
masalalarni taqribiy yechish imkonini beradi. Suzuvchi nuqta arifmetikasi, yaxlitlash
xatoliklari, hisoblash barqarorligi kabi masalalar ragamli tahlilning asosiy
yo‘nalishlarini tashkil etadi.

Massiv funksiyalarining analitik va raqamli xususiyatlarini birga o‘rganish bir
necha sabablarga ko‘ra muhimdir. Birinchidan, analitik xossalar raqamli algoritmlarni
tanlash va loyihalashda asos bo‘ladi. Ikkinchidan, raqamli cheklovlar analitik
natijjalarning amaliy qo‘llanilishini belgilaydi. Uchinchidan, bu ikki yondashuv
birgalikda samarali va aniq hisoblash usullarini yaratishga imkon beradi.

Zamonaviy ilmiy hisoblashlarda, ma’lumotlar tahlilida va sun’iy intellektda
massiv funksiyalarining roli tobora ortib bormoqda. Katta haymdagi ma’lumotlar bilan
ishlash, murakkab modellarni o‘qitish, real vaqtda qaror gabul qilish kabi vazifalar
samarali massiv operatsiyalarini talab qiladi. Shuning uchun, bu funksiyalarning
analitik va raqamli xususiyatlarini to‘liq tushunish zarurati paydo bo‘ladi.

Tadqiqotning magsadi ko‘p o‘lchovli massiv funksiyalarining analitik va ragamli
xususiyatlarini sistemali ravishda o‘rganish, ularning o‘zaro bog‘ligligini aniqlash,
xatoliklar manbalarini tahlil qilish va optimal hisoblash strategiyalarini ishlab
chigishdan iborat. Tadqiqot ob’ekti sifatida turli turdagi massiv funksiyalari (chiziqli,
nochiziqli, differensiallanuvchi, integral) va ularning hisoblash xususiyatlari tanlab
olingan.

Asosly qism
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Analitik funksiyalar nazariyasi va massivlarga tatbiqi

Analitik funksiyalar kompleks tahlilning asosiy ob’ekti bo‘lib, ular har bir
nuqtada kompleks differensiallanuvchi funksiyalardir. Funksiya f(z) sohada analitik
deyiladi, agar u bu sohaning har bir nuqtasida kompleks differensiallanuvchi bo‘lsa.
Kompleks differensiallanish Koshi-Riman shartlari bilan aniglanadi.

Agar f(z) = u(x,y) + iv(x,y) bo‘lib, z = x + 1y bo‘lsa, Koshi-Riman shartlari
quyidagicha: ou/0x = ov/0y va ou/0y = -0v/Ox. Bu shartlar bajarilganda funksiya
analitikdir. Analitik funksiyalarning muhim xossalari mavjud: ular cheksiz marta
differensiallanuvchi, darajali qatorga yoyilishi mumkin, konform akslantirish hosil
qiladi.

Ko‘p o‘lchovli massivlarda analitik funksiyalar yoyilmasi muhim ahamiyatga
ega. Teylor qatori: f(z) =X {n=0}"c0 a,(z - o), bu yerda a, = f(n)(zo)/n!. Bu yoyilma
funksiyani polinomlar yig‘indisi sifatida ifodalash imkonini beradi va raqamli
hisoblashlarda approksimatsiya uchun ishlatiladi.

Loran qatori yakka nugqtalar atrofida funksiyani yoyish imkonini beradi: f(z) =
> {n=-w0}"0 as(z - z0)". Bu yoyilma murakkabroq funksiyalarni tavsiflashda
qo‘llaniladi. Residuum teoremasi integral hisoblashda muhim rol o‘ynaydi va massiv
integratsiyalarini hisoblashda ishlatilishi mumkin.

Ko‘p o‘zgaruvchili analitik funksiyalar f(zi, z2, ..., z,) har bir o‘zgaruvchi bo‘yicha
alohida analitik bo‘lishi kerak. Gartogs teoremasi shuni ko‘rsatadiki, agar funksiya har
bir o‘zgaruvchi bo‘yicha alohida analitik bo‘lsa, u barcha o‘zgaruvchilar bo‘yicha
birgalikda analitikdir. Bu teorema ko‘p o‘lchovli massiv funksiyalarini tahlil gilishda
muhim.

Differensial hisoblash va massiv hosilalari

Differensial hisoblash massiv funksiyalarining o°zgarish tezligini o‘rganadi. Bitta
o‘zgaruvchili funksiya hosilasi f’(x) = lim_{h—0} [f(x+h) - f(x)]/h orqali aniglanadi.
Ko‘p o‘zgaruvchili funksiyalar uchun qisman hosilalar mavjud: 0f/0x; - faqat x;
o‘zgaruvchisi bo‘yicha hosila.

Gradient vektori VI = (0f/ox1, 0f/0xz, ..., 0f/0x,)" funksiyaning eng tez o‘sish
yo‘nalishini ko‘rsatadi. Gradientning kattaligi ||V1]| o°sish tezligini, yo‘nalishi esa qaysi
tomonga eng tez o‘sishni bildiradi. Gradient nolga teng bo‘lgan nuqtalar kritik nuqtalar
deyiladi va ekstremumlar bu nuqtalarda joylashadi.

Hessian matritsasi H ikkinchi tartibli qisman hosilalardan tashkil topgan: Hj; =
0*t/0xi0x;. Bu matritsa funksiyaning egriligini tavsiflaydi. Agar H musbat aniq bo‘lsa,
funksiya konveksdir. Agar H manfiy aniq bo‘lsa, funksiya konkavdir. Hessian
matritsasi xos qiymatlari egrilik yo‘nalishlarini va intensivligini beradi.

Yakobian matritsasi vektor funksiya f: R* — R™ uchun J; = 0f/0x; orqali
aniqlanadi. Bu matritsa chiziqli approksimatsiyani beradi: f(x + Ax) = f(x) + J(x)Ax.
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Y akobianniig determinanti hajm o°zgarishini ko‘rsatadi va koordinatalar o‘zgarishida
ishlatiladi.

Zanjir qoidasi kompozitsiya hosilasini hisoblash uchun: agar h = g o f bo‘lsa,
Dh(x) = Dg(f(x)) - Df(x). Bu qoida neyron tarmoqglarda orqaga tarqalish
(backpropagation) algoritmining asosida yotadi. Avtomatik differentsiatsiya
zamonaviy dasturlash kutubxonalarida (TensorFlow, PyTorch) zanjir qoidasini
avtomatik qo‘llaydi.

Yo‘nalish bo‘yicha hosila D v f(x) = Vf(x) - v funksiyaning v yo‘nalishda
o‘zgarish tezligini beradi. Maksimal qiymat ||V{(x)|| bo‘lib, bu gradient yo‘nalishida
erishiladi. Kontur chiziglari Vf ga perpendikulyar yo‘nalishlarda joylashgan.

Raqamli differentsiatsiya usullari

Analitik hosilalarni hisoblash har doim ham mumkin emas, shuning uchun
raqamli differentsiatsiya usullari qo‘llaniladi. Oldinga farq (forward difference): f*(x)
=~ [f(x+h) - f(x)]/h. Bu eng oddiy usul bo‘lib, xatoligi O(h) tartibida.

Orqaga farq (backward difference): f'(x) = [f(x) - f(x-h)]/h. Bu ham O(h)
xatolikka ega. Markaziy farq (central difference): f(x) = [f(x+h) - f(x-h)]/(2h). Bu
aniqroq bo‘lib, xatoligi O(h?) tartibida.

Yugori tartibli hosilalar uchun: £’(x) = [f(x+h) - 2f(x) + f(x-h)]/h?. Bu ikkinchi
hosila uchun markaziy farq formulasi bo‘lib, xatoligi O(h?) tartibida. Uchinchi va
yuqori hosilalar ham shunga o‘xshash formulalar bilan hisoblanadi.

Qadam uzunligi h ni tanlash muhim masala. Agar h juda kichik bo‘lsa, yaxlitlash
xatoliklari ortadi. Agar h juda katta bo‘lsa, approksimatsiya xatoligi ortadi. Optimal h
~ g tartibida, bu yerda ¢ - mashinali aniglik (odatda 107'6). Amalda h ~ 10# tanlash
ko*pincha yaxshi natija beradi.

Kompleks qadam differentsiatsiyasi yuqori aniqlik beradi: £*(x) = Im[f(x + ih)]/h,
bu yerda i1 - xayoliy birlik. Bu usulning xatoligi O(h?) bo‘lib, lekin yaxlitlash
xatoliklaridan kam ta’sirlanadi. Sababi, ayirish operatsiyasi yo‘q va shu sababli
katastrofik qisqarish muammosi yuzaga kelmaydi.

Ko‘p o‘zgaruvchili funksiyalar uchun gradient quyidagicha hisoblanadi: 0t/0x; =
[f(x + hei) - f(x - hei)]/(2h), bu yerda e; - i-yo‘nalishdagi birlik vektor. Hessian matritsasi
uchun: 0*t/0xi0x; = [f(x+heithej) - f(x+hei-he;) - f(x-heit+he;)) + f(x-hei-he;)]/(4h?).

Avtomatik differentsiatsiya (AD) aniq hosilalarni hisoblashning zamonaviy usuli.
Oldinga rejim (forward mode) zanjir qoidasini chapdan o‘ngga qo‘llaydi va bir
o‘zgaruvchi bo‘yicha hosilani samarali hisoblaydi. Orqaga rejim (reverse mode)
o‘ngdan chapga qo‘llaydi va ko‘p o‘zgaruvchilar bo‘yicha hosilani samarali
hisoblaydi. Backpropagation orqaga rejim AD ning maxsus holi hisoblanadi.

Integral hisoblash va raqamli integratsiya

Integral hisoblash massiv funksiyalarining yig‘indisini va o‘rtacha qiymatini
topish uchun ishlatiladi. Aniq integral J,* f(x)dx funksiyaning [a,b] oraliqda ostidagi
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yuzani beradi. Nyuton-Leybnis formulasi: J,* f(x)dx = F(b) - F(a), bu yerda F - f ning
boshlang‘ich funksiyasi.

Ko‘p o‘lchovli integrallar ketma-ket yoki takroriy integrallar sifatida hisoblanadi:
[[ D f(x,y)dxdy = | a™b [[ c~d f(x,y)dy]dx. Fubini teoremasi integratsiya tartibini
o‘zgartirish imkonini beradi (ma’lum shartlar ostida).

Raqamli integratsiya (kvadratura) integral qiymatini taqribiy hisoblash usullari
majmuasi. To‘gri to‘rtburchaklar usuli: [,* fix)dx = h i f(xi), bu yerda h = (b-a)/n va
xi = a + ih. Bu eng oddiy usul bo‘lib, xatoligi O(h) tartibida.

Trapetsiya usuli: [;> f(x)dx =~ h[f(a)/2 + Zi-i*! f(x;) + f(b)/2]. Bu usul chizigli
interpolyatsiyaga asoslangan va xatoligi O(h?) tartibida. Simpson usuli kvadratik
interpolyatsiyaga asoslangan: [,* f(x)dx = (h/3)[f(a) + 4X(toq 1) f(xi) + 2Z(juft 1) f(xi) +
f(b)]. Bu usulning xatoligi O(h*) tartibida va odatda aniqroq.

Gauss kvadraturasi eng samarali usullardan biri. n ta nuqtada 2n-1 darajali
polinomlarni aniq integrallaydi. Gauss-Lejandre kvadraturasi: |-! f(x)dx ~ Z; wif(x),
bu yerda x; - Lejandre polinomlarining ildizlari, wi - og‘irliklar. Umumiy oraliq uchun
koordinatalar o‘zgarishi qo‘llaniladi.

Ko‘p o‘lchovli integrallar uchun Monte-Karlo usullari samarali. G‘oya: tasodifiy
nugqtalarda funksiya qiymatlarini hisoblash va o‘rtachani topish. | D f(x)dx = V(D)/N
>N f(x;), bu yerda V(D) - soha hajmi, x; - tasodifiy nuqtalar. Xatolik O(1/\N) tartibida
bo‘lib, o‘lchamga bog‘lig emas - bu yuqori o‘lchovlarda katta afzallik.

Adaptiv integratsiya xatolikni baholash va kerakli joylarda nuqtalar sonini
oshirish orqali aniqlikni oshiradi. Algoritm oraligni kichik qismlarga bo‘ladi va har bir
gqismda xatolikni tekshiradi. Agar xatolik katta bo‘lsa, qism yanada kichikroq
bo‘laklarga bo‘linadi. Bu usul funksiya silliq bo‘lmagan joylarda samarali.

Interpolyatsiya va approksimatsiya nazariyasi

Interpolyatsiya - berilgan nuqtalardagi giymatlari ma’lum bo‘lgan funksiyani
tiklash masalasi. n ta nuqgta (Xo, yo), (X1, y1), ..., (Xa-1, Yn-1) berilgan bo‘lsa, P(xi) = yi
shartni qanoatlantiruvchi polinom P topiladi.

Lagranj interpolyatsiya polinomi: P(x) = Xi-o" ! y; Li(x), bu yerda Li(x) = I (x -
Xj)/(xi - Xj) - Lagranj bazis polinomlari. Bu polinom yagona va darajasi n-1 dan
oshmaydigan polinom. Hisoblash murakkabligi O(n?).

Nyuton interpolyatsiya polinomi: P(x) = a0 + a1(X-Xo) + a2(X-Xo)(x-x1) + ... Bu shakl
yangi nuqta qo‘shilganda samarali. Koeffitsientlar bo‘lingan farqlar orgali hisoblanadi:
ai = f[Xo, X1, ..., Xi], bu yerda f[Xo, X1, ..., Xi] - i-tartibli bo‘lingan farq.

Interpolyatsiya xatoligi: agar f funksiya n marta uzluksiz differensiallanuvchi
bo‘lsa, |f(x) - P(x)] < M/n! |ITi=e" '(X - xj)|, bu yerda M = max |[f*(n)(§)|. Bu formula
xatolikni baholash imkonini beradi.

Runge hodisasi yuqori darajali polinomlar bilan interpolyatsiyada yuzaga keladi.
Teng oraligli nuqtalarda yuqori darajali polinom chetlarda katta tebranishlarga ega
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bo‘ladi. Yechim: Chebishev nuqtalaridan foydalanish yoki piecewise interpolyatsiya
(bo‘lakli interpolyatsiya).

Splayn interpolyatsiyasi bo‘lakli polinom interpolyatsiyasi bo‘lib, oraligni kichik
qismlarga bo‘ladi va har bir qismda past darajali polinom ishlatadi. Kubik splayn - eng
keng tarqalgan tur bo‘lib, har bir bo‘lakda 3-darajali polinom. Shart: funksiya va uning
birinchi va ikkinchi hosilalari uzluksiz.

Ko‘p o‘lchovli interpolyatsiya murakkabbroq. Bilinear interpolyatsiya to‘rt nuqta
asosida: f(x,y) = aeo + aiox + amy + aunxy. Bicubic interpolyatsiya 16 ta nuqta va
hosilalar ma’lumotlaridan foydalanadi, natija silliqgroq bo‘ladi. Yuqori o‘lchovlarda
tensorli ko‘paytma usullari qo‘llaniladi.

Approksimatsiya va eng yaxshi yaqinlashish

Approksimatsiya - funksiyani oddiyroq funksiyalar bilan yaqinlashtirish. Magsad:
|If - g|| ni minimallash, bu yerda g - approksimatsiyalovchi funksiya. Turli normalar
turli approksimatsiyalarni beradi.

Eng kichik kvadratlar usuli L. normasida approksimatsiya: min %; (f(x;) - g(xi))*.
Agar g polinomlar fazosidan tanlansa, normal tenglamalar sistemasi hosil bo‘ladi.
Yechim chiziqli algebraik tizimni yechish orqali topiladi. Bu usul statistik tahlilda
regressiya deyiladi.

Chebishev approksimatsiyasi Loo normasida approksimatsiya: min max_x |f(x) -
g(x)|. Bu minimax approksimatsiya deyiladi va eng yomon holatda ham minimal
xatolikni ta’minlaydi. Remez algoritmi Chebishev approksimatsiyasini hisoblaydi.

Fourier qatori davriy funksiyalarni approksimatsiya qiladi: f(x) = ao/2 + Zji=1®
[acos(kx) + bisin(kx)]. Koeffitsientlar integral orgali hisoblanadi: a, = (1/x) [-n*n
f(x)cos(kx)dx. Tez Fourier transformatsiyasi (FFT) bu koeffitsientlarni O(n log n)
vaqtda hisoblaydi.

Veyvlet approksimatsiyasi lokal xususiyatlarni yaxshi ushlaydi. Veyvletlar -
kichik to‘lginlar bo‘lib, ular cho‘ziladi va siljiydi. Veyvlet yoyilmasi: f(x) = Zjx Cjx
Vyik(X), bu yerda wyjk - asosiy veyvletlarning cho‘zilgan va siljigan versiyalari.
Veyvletlar tasvirlarni siqish va signallarni qayta ishlashda keng qo‘llaniladi.

Ratsional approksimatsiya polinomlar nisbati bilan: R(x) = P(x)/Q(x). Pade
approksimatsiyasi Teylor qatorining ratsional o‘xshashi bo‘lib, katta oraligda yaxshi
ishlaydi. Aynigsa, qutblarga ega funksiyalar uchun foydali.

Xatoliklar tahlili va bargarorlik

Ragamli hisoblashlarda xatoliklar mugqgarrar. Xatoliklarni tahlil qilish va
boshqgarish ragamli tahlilning asosiy vazifasi. Xatoliklar uch asosiy turga bo‘linadi:
model xatoliklari (fizik hodisani matematik model bilan approksimatsiya),
ma’lumotlar xatoliklari (o°‘lchash xatoliklari), hisoblash xatoliklari (ragamli usullar va
yaxlitlash).
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Absolyut xatolik Ax = |x - x|, bu yerda x - aniq qiymat, X - taqribiy qiymat. Nisbiy
xatolik 0x = |X - x|/|x| xatolikni giymatga nisbatan o‘lchaydi. Amalda aniq giymat
noma’lum bo‘ladi va xatolikni baholash kerak.

Yaxlitlash xatoliklari suzuvchi nuqgta arifmetikasidan kelib chigadi. Har bir son
chekli aniqlikda saqlanadi. IEEE 754 standart: float (32 bit, 7-8 ta o‘nlik ragam),
double (64 bit, 15-16 ta o‘nlik raqam). Mashinali epsilon €maChinc - 1 + € > 1 bo‘ladigan
eng kichik e.

Operatsiyalar xatoliklari: fi(x @ y) = (x @ y)(1 + ), bu yerda |5| < &maChine va P
€ {+, -, X, /}. Katastrofik qgisqarish yaqin sonlarni ayirishda yuzaga keladi va nisbiy
xatolikni katta oshiradi. Masalan, agar x =~y bo‘lsa, x - y da nisbiy xatolik katta bo‘ladi.

Xatoliklarning tarqalishi: agar y = f(x) bo‘lsa va x da Ax xatolik bo‘lsa, y da Ay =
|f’(x)| Ax xatolik yuzaga keladi. Ko‘p o‘zgaruvchili funksiya uchun: Af= Z; |0f/0xi| Axi.
Bu formula xatoliklar ganday to‘planishini ko‘rsatadi.

Barqarorlik - algoritmning xatoliklarga chidamliligl::. Barqaror algoritm kichik
kirishdagi xatolikni kichik chiqishdagi xatolikka olib keladi. Nobarqaror algoritm
xatoliklarni kuchaytiradi. Orqaga barqarorlik: taqribiy yechim X qaysi muammoning
aniq yechimi? Agar X - (A + E)*{-1}(b + &b) va ||E||, ||6b]| kichik bo‘lsa, algoritm
orqaga barqaror.

Sharti ragami k muammoning xatoliklarga sezgirligini o‘Ichaydi. Yaxshi shaklda
qo‘yilgan muammolar (well-conditioned) x = 1 ga ega. Noto‘g‘ri shaklda qo‘yilgan
muammolar (ill-conditioned) k > 1 ga ega. Chiziqli tizim uchun: «(A) = [|[A|| ||A7Y],
xatolik kuchayishi k(A) tartibida bo‘ladi.

Konvergentsiya tahlili va tezligi

Ketma-ketlikning konvergentsiyasi - limitga yaqinlashish. Ketma-ketlik {xi} x*
ga yaqinlashadi, agar lim_{k—o0} [|x« - x*|| = 0 bo‘lsa. Konvergentsiya tezligi muhim
xarakteristika: tezroq yaqinlashish kamroq iteratsiya talab giladi.

Chiziqli konvergentsiya: ||xx+1 - x*|| < C||xk - x*||, bu yerda 0 < C < 1. Xatolik har
iteratsiyada C marta kamayadi. C ga konvergentsiya koeffitsiyenti deyiladi. Qanchalik
kichik bo‘lsa, shunchalik tez yaqinlashadi.

Kvadratik konvergentsiya: |[xi+1 - x*|| < C||xk - x*||>. Xatolik kvadratik kamayadi
- juda tez. Masalan, agar |[x: - x*||=1072, ||x2 - x*|| = 1074, ||x5 - x*|| = 1078, Nyuton usuli
kvadratik konvergentsiyaga ega.

Yugqori tartibli konvergentsiya: |xi+1 - x*|| < Cl|xx - x*||*p, p > 2. Bunday
konvergentsiya superchiziqli yoki kubik (p=3) deyiladi. Amalda p=2 dan yuqori
kamdan-kam uchraydi.

Nyuton usuli f(x) = 0 tenglamani yechadi: xin1 = x¢ - f(x)/f’(xx). Oddiy ildiz
yaqinida kvadratik konvergentsiyaga ega. Ko‘p o‘lchovli holda: xi+1 = xi - [J(xx)]™
f(x«), bu yerda J - Yakobian matritsasi.
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Gradientli tushish optimallash uchun: xi+1 = x« - aVf(xx). Konveks funksiya uchun
chiziqli konvergentsiya. Tezlik sharti raqamiga bog‘liq: p = (x-1)/(x+1). Agar x katta
bo‘lsa, konvergentsiya sekin.

Qadam a ni tanlash muhim. Juda katta o - divergentsiya. Juda kichik a - sekin
konvergentsiya. Chiziq bo‘ylab qidiruv (line search) optimal o ni topadi. Adaptiv
usullar (Adam, RMSprop) a ni avtomatik sozlaydi.

Konjugat gradientlar usuli kvadratik funktsiyalar uchun n iteratsiyada aniq
yechim topadi (nazariy jihatdan). Amalda, yaxlitlash xatoliklari tufayli ko‘proq
iteratsiya kerak bo‘lishi mumkin. Ammo, Nyuton usuliga nisbatan Yakobianm
hisoblash kerak emas.

Ragamli chiziqli algebra algoritmlari

Chizigli tizim Ax = b ni yechish ko‘plab massiv funksiyalarining asosida yotadi.
Gauss usuli - eng klassik usul. Forward elimination (oldinga yo‘qotish): A ni yuqori
uchburchak shaklga keltirish. Backward substitution (orqaga almashtirish): yechimni
topish. Vaqt murakkabligi: O(n?).

Ustun element tanlash (partial pivoting) barqgarorlikni oshiradi. Har bir qadamda
eng katta absolyut giymatli elementni tanlash. To‘liq element tanlash (complete
pivoting) eng barqaror, lekin sekinroq. Amalda qisman element tanlash yetarli.

LU faktorizatsiya: A = LU, bu yerda L - pastki uchburchak, U - yuqori
uchburchak. Bir marta faktorizatsiya gilgandan keyin, turli b lar uchun tizimni tez
yechish mumkin: Ly =b, keyin Ux =y. Bu ko‘p o‘ng tomonli tizimlar uchun samarali.

Cholesky faktorizatsiyasi simmetrik musbat aniq matritsalar uchun: A = LL"T.
Faqat L ni saglash kerak - xotira tejash. Hisoblash LU dan ikki baravar tezroq. Raqamli
barqarorlik yaxshi - musbat aniqlik kafolati.

Iterativ usullar katta siyrak matritsalar uchun samaraliroq. Yakobiy usuli:
xM(k+1)} =D"{-1}(b - (L+U)x"{(k)}). Gauss-Zeydel usuli: yangilangan qiymatlarni
darhol ishlatadi, tezroq yaqinlashadi. SOR (Successive Over-Relaxation): relaksatsiya
parametri o bilan tezlashtirish.

Konjugat gradientlar (CG) simmetrik musbat aniq tizimlar uchun eng samarali
iterativ usul. Krylov kichik fazosida ishlaydi. Nazariy jihatdan n iteratsiyada aniq
yechim. Amalda, € aniglikka erishish uchun O(vx log(1/¢)) iteratsiya kerak.

Prekonditsionerlash konvergentsiyani tezlashtirish uchun: M~ {-1} Ax = M"{-1}b
yechish, bu yerda k(M"{-1} A) <k(A). Yaxshi prekonditsioner: hisoblash arzon, sharti
raqamini sezilarli kamaytiradi. Incomplete LU, Jacobi, SSOR - keng tarqalgan
prekonditionerlar.

GMRES (Generalized Minimal Residual) nosimmetrik tizimlar uchun. Krylov
kichik fazosida minimal residuum prinsipiga asoslangan. Xotira talabi katta - restart
strategiyasi bilan kamaytiriladi. BICGSTAB - muqobil usul, kamroq xotira, lekin
kamroq bargqaror.
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Xos qiymatlar va singular qiymatlarni hisoblash

Xos giymatlar masalasi: Av = Av. Bu nosimmetrik tizim, oddiy chiziqli tizimdan
murakkabroq. To‘g‘ridan-to‘g‘ri usullar (analitik formula) faqat kichik matritsalar (n
<4) uchun amaliy.

Quvvat usuli (Power method) eng katta absolyut qiymatli xos qiymatni topadi.
Algoritm: v*{(k+1)} = Av*{(k)}/||Av"{(k)}||. Konvergentsiya tezligi |A>/A1| ga bog‘liq.
Agar A > A2 bo‘lsa, tez yaqinlashadi.

Teskari iteratsiya eng kichik xos qiymatni topadi: (A - cl)*{-1} ga quvvat usulini
qo‘llash. Agar o = A bo‘lsa, juda tez konvergentsiya (Rayleigh quotient iteration bilan
kombinatsiyalanganda kvadratik).

QR algoritmi barcha xos qiyatlarni topadi. Algoritm: Ao = A, Ax = QRk (QR
faktorizatsiya), Aw+1 = RiQw. Ketma-ketlik {Ayx} Schur shaklga yaqinlashadi (yuqori
uchburchak yoki kvaziuchburchak). Diagonalda xos qiyatlar. Vaqt murakkabligi: O(n?)
har bir iteratsiya, O(n) iteratsiya kerak.

Hessenberg shaklga keltirish oldindan qo‘llaniladi: QAQ”T = H, bu yerda H -
Hessenberg matritsasi (pastki uchburchakka yaqin). Hessenberg matritsada QR
iteratsiyasi O(n?) vaqt talab giladi. Umumiy murakkablik: O(n?*) boshlang‘ich keltirish
+ O(n?) iteratsiyalar.

Singular qiymatlar masalasi: A = UXV/T. To‘g‘ridan-to‘g‘ri hisoblash: A*T A va
AA”T ning xos qiyatlarini topish. Lekin A®T A sharti ragami x(A)*> bo‘ladi -
barqarorlik muammosi. Yaxshiroq: Golub-Kahan bidiagonalizatsiyasi.

Bidiagonal shaklga keltirish: Us"T A Vo = B, bu yerda B - bidiagonal (ikki
diagonal). Keyin B ga iterativ usul (QR yoki divide-and-conquer) qo‘llaniladi.
Umumiy murakkablik: O(mn?) yoki O(m?n) (m va n dan kichigi).

Truncated SVD katta matritsalar uchun faqat bir nechta eng katta singular
qiymatlarni topadi. Lanczos yoki Arnoldi iteratsiyalari Krylov kichik fazosida ishlaydi.
Randomized SVD tasodifiy proyeksiyalar orqali tezlashtiradi - ma’lumotlar tahlilida
mashhur.

Optimallash algoritmlari va ularning konvergentsiyasi

Optimallash - funksiyaning ekstremumini topish. Cheklanmagan optimallash:
min_x f(x). Birinchi tartibli usullar faqat gradient ishlatadi, ikkinchi tartibli usullar
Hessian ham ishlatadi.

Gradientli tushish (Gradient Descent): x*{(k+1)} = x*{(k)} - a_k Vi(x*{(k)}).
Eng oddiy usul, katta miqyosli muammolar uchun mos. Konvergentsiya tezligi sharti
raqamiga bog‘liq. Konveks funksiya uchun chizigli konvergentsiya.

Chiziq bo‘ylab qidiruv (Line search) optimal gadamni topadi: a_k = argmin o
fx™M(k)} - aVIx*{(k)})). Aniq chiziq qidiruvi qimmat, taxminiy usullar (Armijo,
Wolfe shartlari) amaliy.
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Momentum usuli oldingi yo‘nalishlarni hisobga oladi: v*{(k+1)} = Bv*{(k)} -
aVixM{(k)}), xMk+1)} = xM&K)} + v*(k+1)}. Tebranishlarni kamaytiradi,
konvergentsiyani tezlashtiradi. Nesterov momentum yanada yaxshiroq.

Adaptiv usullar har bir parametr uchun alohida qadam: AdaGrad, RMSprop,
Adam. Adam - eng mashhur, birinchi va ikkinchi momentlarni hisobga oladi. Chuqur
o‘rganishda standart tanlov.

Nyuton usuli ikkinchi tartibli: x*{(k+1)} = x*{(k)} - [HE &)} {-
1} VEx~{(k)}). Kvadratik konvergentsiya, lekin Hessian hisoblash va invertsiya
qimmat (O(n?)). Kichik masalalar uchun mos.

Kvazi-Nyuton usullari Hessian teskari approksimatsiyasini saqlab yangilaydi:
B {k+1} =[Hx"{(k)})]"{-1}. BFGS - eng mashhur kvazi-Nyuton usuli. Superchiziqli
konvergentsiya, O(n?) xotira. Limited-memory BFGS (L-BFGS) faqat so‘nggi bir
nechta yangilanishni saqlaydi - katta masalalar uchun.

Konjugat gradientlar optimallash uchun: yo‘nalishlar konjugat (Hessian bo‘yicha
ortogonal). Kvadratik funksiya uchun n iteratsiyada yechim. Nochizigli funksiyalar
uchun nonlinear CG variantlari (Fletcher-Reeves, Polak-Ribiere).

Stoxastik gradiyent tushish (SGD) katta ma’lumotlar to‘plamlarida: gradient
approksimatsiyasini kichik mini-batch da hisoblash. Har bir iteratsiya arzon, lekin
shovqinli. Mini-batch hajmi va learning rate schedule muhim giperparametrlar.

Xulosa

Ko‘p o‘lchovli massiv funksiyalarining analitik va ragamli xususiyatlarini tadqiq
qilish natijasida quyidagi asosiy xulosalarga kelamiz.

Analitik funksiyalar nazariyasi massiv operatsiyalarining nazariy asosini tashkil
etadi. Koshi-Riman shartlari, Teylor va Loran qatorlari, Gartogs teoremasi kabi
tushunchalar ko‘p oflchovli funksiyalarning xususiyatlarini tushunishga yordam
beradi. Analitiklik xossasi ko‘plab matematik teoremalar va usullarni qo‘llash
imkonini beradi.

Differensial hisoblash massiv funksiyalarining mahalliy xususiyatlarini
o‘rganadi. Gradient, Hessian va Yakobian matritsalari funksiyaning o‘zgarish tezligini,
egriligini va chizigli approksimatsiyasini beradi. Zanjir qoidasi murakkab
kompozitsiyalarning hosilalarini hisoblash imkonini beradi va zamonaviy chuqur
o‘rganishda asosiy rol o‘ynaydi.

Ragamli differentsiatsiya analitik hosilalar mavjud bo‘lmagan hollarda
qo‘llaniladi. Oldinga, orqaga va markaziy farglar turli aniqlik darajalarini beradi.
Qadam wuzunligini to‘g‘ri tanlash approksimatsiya va yaxlitlash xatoliklarini
muvozanatlash uchun muhim. Avtomatik differentsiatsiya zamonaviy yondashuv
bo‘lib, aniq hosilalarni samarali hisoblaydi.

Integral hisoblash va raqamli integratsiya massiv funksiyalarining global
xususiyatlarini o‘rganadi. Trapetsiya, Simpson va Gauss kvadraturalari turli aniqlik va
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murakkablikka ega. Ko‘p o‘lchovli integrallar uchun Monte-Karlo usullari yuqori
o‘lchovlarda samarali. Adaptiv integratsiya xatolikni boshqarish imkonini beradi.

Interpolyatsiya va approksimatsiya funksiyalarni oddiyroq funksiyalar bilan
yaqinlashtiradi. Lagranj va Nyuton polinomlari, kubik splaynlar, Fourier qatori,
veyvlet yoyilmasi turli vazifalar uchun mos. Eng kichik kvadratlar va Chebishev
approksimatsiyalari turli optimallash mezonlarini qo‘llaydi.

Xatoliklar tahlili va barqgarorlik ragamli hisoblashlarning ishonchliligini
ta’minlaydi. Absolyut va nisbiy xatoliklar, yaxlitlash xatoliklari, katastrofik qisqarish,
sharti ragami kabi tushunchalar algoritmlarni tanlash va loyihalashda muhim. Orqaga
barqarorlik algoritm sifatini baholash uchun qo‘llaniladi.

Konvergentsiya tahlili iterativ algoritmlarning samaradorligini o°‘lchaydi.
Chiziqli, kvadratik va yugqori tartibli konvergentsiya tezligi algoritm tanlashda asosiy
mezon. Nyuton usuli, gradientli tushish, konjugat gradientlar kabi usullarning
konvergentsiya xususiyatlari yaxshi o‘rganilgan.

Ragamli chizigli algebra algoritmlari ko‘plab massiv operatsiyalarining asosida
yotadi. Gauss usuli, LU va Cholesky faktorizatsiyalari, iterativ usullar (Yakobiy,
Gauss-Zeydel, CG, GMRES) turli vazifalar va matritsa xususiyatlari uchun mos.
Prekonditsionerlash konvergentsiyani sezilarli tezlashtiradi.

Xos qiymatlar va singular qiymatlarni hisoblash spektral tahlil uchun zarur.
Quvvat usuli, QR algoritmi, Golub-Kahan bidiagonalizatsiyasi turli aniqlik va
murakkablikka ega. Truncated va randomized usullar katta matritsalar uchun samarali.

Optimallash algoritmlari ekstremumlarni topishda qo‘llaniladi. Birinchi tartibli
usullar (gradientli tushish va variantlari) katta miqyosli muammolar uchun mos.
Ikkinchi tartibli usullar (Nyuton, kvazi-Nyuton) tezroq yaqinlashadi, lekin qgimmatroq.
Stoxastik usullar katta ma’lumotlar to‘plamlari uchun zarur.

Umumiy xulosa: massiv funksiyalarining analitik xususiyatlari nazariy asos
yaratadi, raqamli xususiyatlar esa amaliy qo‘llanishni ta’minlaydi. Bu ikki yondashuv
birgalikda samarali, aniq va barqaror hisoblash algoritmlarini yaratish imkonini beradi.
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