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Ko‘p o‘lchovli ma’lumot massivlarida belgilangan
funksiyalarning algebraik va analitik xususiyatlari

Gulbodom Oybek qizi Norqulova
BXU

Annotatsiya: Ushbu maqolada ko‘p o‘lchovli ma’lumot massivlarida belgilangan
funksiyalarning algebraik va analitik xususiyatlari kompleks tadqiq qilingan. Massiv
funksiyalarining algebraik tuzilmasi, guruh va halqa xususiyatlari, chiziqli va bilinear
operatorlar, analitik davomiylik va differensiallanish xossalari chuqur o‘rganilgan.
Tadqiqotda funksiyalarning kommutativlik, assotsiativlik, distributivlik kabi algebraik
gonunlari, ularning uzluksizligi, limitlar nazariyasi va yaqinlashish masalalari tahlil
qilingan. Maqolada tensorli algebraning asosiy qonunlari, ko‘p chiziqli xaritalashlar,
funksional fazolar nazariyasi va operatorlar spektral xususiyatlari batafsil ko‘rib
chiqilgan. Nazariy natijalar zamonaviy ma’lumotlar tahlili, mashinali o‘rganish va
ilmiy hisoblashlarda qo‘llaniladigan massiv operatsiyalariga mustahkam matematik
asos yaratadi.
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Algebraic and Analytical Properties of Functions Defined on
Multidimensional Data Arrays

Gulbodom Oybek qizi Norqulova
BIU

Abstract: This article presents a comprehensive study of the algebraic and
analytical properties of functions defined on multidimensional data arrays. The
algebraic structure of array functions, group and ring properties, linear and bilinear
operators, analytic continuation, and differentiability are thoroughly examined. The
study analyzes algebraic laws such as commutativity, associativity, and distributivity,
as well as continuity, limit theory, and convergence issues. The paper provides a
detailed discussion of the fundamental laws of tensor algebra, multilinear mappings,
the theory of functional spaces, and the spectral properties of operators. The theoretical
results provide a solid mathematical foundation for array operations used in modern
data analysis, machine learning, and scientific computing.
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Kirish

Ko‘p o‘lchovli ma’lumot massivlari zamonaviy axborot texnologiyalarining
asosiy strukturaviy elementlari bo‘lib, ular ustida belgilangan funksiyalar murakkab
algebraik va analitik xususiyatlarga ega. Bu funksiyalarning nazariy asoslarini chuqur
tushunish samarali algoritmlar yaratish, ma’lumotlarni to‘g‘ri qayta ishlash va
matematik qonuniyatlarni aniqlash uchun zarurdir.

Algebraik yondashuv massiv funksiyalarini algebraik strukturalar nuqtai
nazaridan o‘rganadi. Massivlar to‘plami guruh, halga yoki maydon strukturasiga ega
bo‘lishi mumkin. Qo‘shish va ko‘paytirish operatsiyalari algebraik qonunlarga
bo‘ysinadi. Chizigli operatorlar vektorli fazolar orasidagi strukturani saqlovchi
xaritalashlardir. Tensorli algebra yuqori o‘lchovli massivlar uchun algebraik apparatni
tagdim etadi.

Analitik yondashuv esa funksiyalarning uzluksizligi, differensiallanishi,
integratsiya qobiliyati kabi xususiyatlarni o‘rganadi. Limitlar nazariyasi ketma-
ketliklarning yaqinlashishini tavsiflaydi. Metrik va normali fazolar yaqinlik
tushunchasini aniqlaydi. Davomiy funksiyalar kichik o‘zgarishlarga barqaror javob
beradi. Differensiallanuvchi funksiyalar mahalliy chizigli approksimatsiyaga ega.

Ma’lumot massivlari kontekstida algebraik va analitik xususiyatlarning birgalikda
o‘rganilishi muhim ahamiyatga ega. Ma’lumotlar tuzilmasi algebraik strukturani
belgilaydi. Operatsiyalar algebraik qonunlarga bo‘ysinishi kerak. Ayni paytda, amaliy
hisoblashlarda wuzluksizlik va differensiallanish xossalari zarur. Optimallash
algoritmlari gradient va Hessian ma’lumotlaridan foydalanadi. Konvergentsiya tahlili
limitlar nazariyasiga asoslanadi.

Zamonaviy ma’lumotlar fani katta hajmdagi ko‘p o‘lchovli massivlar bilan
ishlaydi. Tasvirlar, videolar, vaqt qatorlari, ijtimoiy tarmoq ma’lumotlari - barchasi
ko‘p o‘lchovli strukturalarga ega. Sun’iy neyron tarmoqlar tensorlar bilan ishlaydi.
Chuqur o‘rganish algebraik va analitik xususiyatlardan keng foydalanadi. Gradient
tushish, orqaga tarqalish, batch normalizatsiya kabi usullar bu xususiyatlarga
asoslanadi.

Ushbu tadqiqotning maqgsadi ko‘p o‘lchovli ma’lumot massivlarida belgilangan
funksiyalarning algebraik va analitik xususiyatlarini sistemali ravishda o‘rganish,
ularning nazariy asoslarini yaratish va amaliy qo‘llanmalarga matematik fundament
berishdan iborat. Tadqiqot ob’ekti sifatida turli algebraik strukturalar (guruhlar,
halgalar, maydonlar, modullar) va analitik xususiyatlar (uzluksizlik, differensiallanish,
integratsiya) tanlab olingan.
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Asosiy qism

Algebraik strukturalar va massivlar

Algebraik  struktura - to‘plamda belgilangan operatsiyalar va ular
ganoatlantiruvchi aksiomalar majmuasi. Ko‘p o‘lchovli massivlar turli algebraik
strukturalarga ega bo‘lishi mumkin.

Guruh (G, *) - to‘plam G va operatsiya * bo‘lib, quyidagi aksiomalarga ega:
yopiqlik (a, b € G = a * b € G), assotsiativlik ((a * b) * c=a * (b * ¢)), neytral element
mavjud (Je: a * e = e * a = a barcha a € G uchun), teskari element mavjud (3a™': a *
a'=a'*a=e¢e har bir a € G uchun). Agar yana kommutativlik (a * b="b * a) bajarilsa,
guruh kommutativ yoki Abel guruhi deyiladi.

n o‘lchovli vektorlar to‘plami R» qo‘shish operatsiyasi bilan Abel guruhini tashkil
etadi. Neytral element - nol vektor, teskari element - manfiy vektor. m X n matritsalar
to‘plami ham qo‘shish bo‘yicha Abel guruhi. Bu xossa massiv operatsiyalarining
ko‘plab xususiyatlarini tushuntirishga yordam beradi.

Halga (R, +, -) - ikkita operatsiya bilan jithozlangan to‘plam bo‘lib: (R, +) - Abel
guruhi, (R, -) - yarim guruh (yopiqlik va assotsiativlik), distributivlik qonunlari
bajariladi: a:(b+c)=ab+a-cva(a+b)c=ac+b-c. Agar ko‘paytirish kommutativ
bo‘lsa, halga kommutativ deyiladi. Agar birlik element mavjud bo‘lsa, halqa birlikli
deyiladi.

Matritsalar to‘plami M _n(R) qo‘shish va matritsali ko‘paytirish bilan birlikli
(Iekin kommutativ emas) halqani tashkil etadi. Bu halgada AB # BA (umumiy holda).
Bo‘luvchilar nolga ega: AB = 0 bo‘lishi mumkin, lekin A # 0 va B # 0. Bu xususiyat
matritsali tenglamalarni yechishda e’tiborga olinishi kerak.

Maydon (F, +, -) - kommutativ halga bo‘lib, noldan farqli har bir element teskari
ko‘paytirish elementiga ega: a # 0 = Ja': a - a! = 1. Haqiqiy sonlar R va kompleks
sonlar C maydonlardir. Chekli maydonlar ham mavjud (masalan, Z p, bu yerda p - tub
son). Maydonlar algebraik strukturalarning eng "to‘liq"lari hisoblanadi.

Vektorli fazo V maydon F ustida qo‘shish va skalyarga ko‘paytirish operatsiyalari
bilan aniqlangan algebraik struktura. (V, +) - Abel guruhi, skalyarga ko‘paytirish uchun:
a(Bv) = (ap)v, I'v=v, (o + B)v=av + Bv, a(u + v) = au + av. R?, matritsalar fazosi,
funksiyalar fazosi - barchasi vektorli fazolar.

Modullar va tensorli algebra

Modul - vektorli fazoning umumlashtirilishi bo‘lib, maydon o‘rniga halqa ustida
aniqlanadi. R-modul M (bu yerda R - halga) - Abel guruhi (M, +) va halga R ning M
ga ta’siri bo‘lib, vektorli fazodagi kabi qonunlar bajariladi. Agar R kommutativ halqa
bo‘lsa, modul "vektorli fazoga yaqin" bo‘ladi.

Matritsalar ustida aniglanmish modullar chiziqli algebraning ko‘plab natijalarini
umumlashtiradi. Masalan, R modul Z halga ustida. Torsion modullari, erkin modullari,
projektiv modullari kabi tushunchalar modullar nazariyasida muhim.
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Tensorli ko‘paytma ikkita vektorli fazo (yoki modul) V va W dan yangi vektorli
fazo V @ W hosil qgiladi. Tensor v @ w "elementar tensor" deyiladi. Umumiy tensor:
%i vi ® wi ko‘rinishda. Tensorli ko‘paytma bilinear: (vi+v2) @ w=vi Q w + v2 Q
W,VQRQ (WitwW2))=vQRQ Wi+Vv@ Wz (av) @ w=v Q& (aw) =o(v Q w).

Tensorlar daraja (yoki tartib) bilan tavsiflanadi. 0-darajali tensor - skalar, 1-
darajali tensor - vektor, 2-darajali tensor - matritsa, 3-darajali tensor - "kub", va hokazo.
(p,q)-tipli tensor p marta kontravariant va q marta kovariant. Tensorlar fazosi T"p_q(V)
=V .QVRV*R .. V*(p marta V, g marta V*, bu yerda V* - dual fazo).

Tensorli algebra T(V) = @ {k=0}" T*k(V) barcha darajali tensorlarning
to‘g‘ridan-to‘g‘ri yig‘indisi. Bu gradalangan algebra bo‘lib, tensorli ko‘paytma bilan.
Tensorli algebra universal xossaga ega: har qanday bilinear xaritalash tensorli
ko‘paytma orqali ifodalanishi mumkin.

Tashqi algebra A(V) tensorli algebradan antisimmetriklash orqali hosil gilinadi: v
A w=-w A v. Bu geometriyada (differensial formalar), fizikada (elektromagnetizm) va
informatikada (ma’lumotlar strukturalari) qo‘llaniladi. Simmetrik algebra S(V) esa
simmetriklash orqali: vw = wv. Bu algebra polinomlar algebrasiga izomorf.

Chiziqli va ko‘p chiziqli xaritalashlar

Chiziqli xaritalash (yoki chizigli operator) T: V — W vektorli fazolar orasidagi
xaritalash bo‘lib, T(au + Bv) = aT(u) + BT(v) barcha a, B € F va u, v € V uchun.
Chiziqli operatorlar to‘plami Hom(V, W) o°zi vektorli fazo tashkil etadi.

Chiziqli operatorning yadrosi Ker(T) = {v € V : T(v) =0} - V ning vektorli kichik
fazosi. Tasvir Im(T) = {w € W : 3v € V, T(v) = w} - W ning vektorli kichik fazosi.
O‘Ichamlar teoremasi: dim(V) = dim(Ker(T)) + dim(Im(T)). Bu fundamental natija
chiziqgli operatorlarning strukturasini tushunishga yordam beradi.

Bilinear xaritalash B: V x W — U bo‘lib, har bir argumentda alohida chiziqli:
B(avi + Bvz, w) = aB(vi, w) + BB(v2, w) va B(v, aw: + fw2) = aB(v, w1) + BB(v, w2).
Ichki ko‘paytma, matritsalarni ko‘paytirish - bilinear xaritalashlar misollari. Bilinear
formalar (U = F holda) kvadratik formalarga olib keladi va geometriyada muhim.

Ko‘p chizigli (multilinear) xaritalash f: Vi x Va2 x ... x Vi — W har bir argumentda
alohida chizigli. Determinant - ko‘p chizigli va antisimmetrik xaritalash. Tensorlarni
qisqartirish (contraction) - ko‘p chizigli operatsiya. Ko‘p chiziqli algebra tensorli
hisoblashlarning asosini tashkil etadi.

Dual fazo V* =Hom(V, F) - barcha chiziqli funksionallar to‘plami. Agar V chekli
o‘lchovli bo‘lsa, V** = V (tabiiy izomorfizm). Dual bazis: agar {e, ..., €.} - V ning
bazisi bo‘lsa, dual bazis {e', ..., e*} quyidagicha: ¢'(e;) = d;' (Kroneker deltasi). Har
ganday vektor v = ¥; vie; va har ganday ko‘vektor a = X; aie'.

Adjoynt (qo‘shma) operator T*: W* — V* chiziqli operator T: V — W uchun
quyidagicha aniqlanadi: (Te)(v) = @(T(v)) barcha ¢ € W va v € V uchun. Ichki
ko‘paytmali fazoda adjoynt (Tv, w) = (v, Tw) ni ganoatlantiradi. O ‘z-o ‘ziga adjoynt
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operatorlar (T = T) maxsus ahamiyatga ega - ularning xos qiymatlari haqiqiy, xos
vektorlari ortogonal.

Operatorlar algebralari va spektral nazariya

Operator algebra - chiziqli operatorlar to‘plami bo‘lib, qo‘shish, skalyarga
ko‘paytirish va kompozitsiya operatsiyalari bilan yopiq. Agar bu to‘plam norma bilan
jihozlangan va to‘liq bo‘lsa, Banax algebrasi deyiladi. Agar ichki ko‘paytma va
involrotsiya (-operatsiya) mavjud bo ‘Isa, C-algebra deyiladi.

Matritsalar algebrasi M n(C) eng oddiy chekli o‘lchovli operator algebrasi.
Cheksiz o‘Ichovli Hilbert fazosidagi chegaralangan operatorlar B(H) - C*-algebra.
Kompakt operatorlar K(H) - B(H) ning ideal elementi. Von Neumann algebralari -
kuchli operator topologiyada yopiq *-algebralar, kvant mexanikasida muhim.

Spektr operatorning muhim invarianti. Operator T ning spektri o(T) = {A € C: (T
- AD) teskarilanuvchi emas} to‘plami. Nugqta spektri (xos qiyatlar), uzluksiz spektr,
qoldiq spektr - spektrning qismlari. Chekli o‘Ichovli fazoda spektr fagat xos qiyatlardan
iborat. Cheksiz o‘Ichovda spektr murakkabbroq bo‘lishi mumkin.

Spektral radius r(T) = sup{[A| : A € o(T)} - spektrning eng katta absolyut qiymati.
Gelfand formulasi: r(T) = lim_{n—o0} ||[T*n||"*{1/n}. Spektral radius operator normasi
bilan bog‘liq: r(T) < ||T||, tenglik self-adjoynt operatorlar uchun.

Spektral teorema o°‘z-o‘ziga adjoynt operatorlar uchun: kompakt o°‘z-o‘ziga
adjoynt operator T spektral yoyilmaga ega: T = X; Ai P;, bu yerda A; - xos qiyatlar, P; -
xos kichik fazolarga proyeksiyalar. Umumiy (chegaralanmagan) o‘z-o‘ziga adjoynt
operatorlar uchun spektral o‘lchov nazariyasi qo‘llaniladi: T =] A dE(X), bu yerda E -
proyeksiyali o‘Ichov.

Singular giymatlar har ganday chegaralangan operator uchun mavjud: T = % o;
ui(vi, -), bu yerda o; - singular qiymatlar (kamayuvchi tartibda), u; va v; - ortonormal
vektorlar. Bu yoyilma har qanday operatorni sodda operatorlar yig‘indisi sifatida
ifodalaydi. Kompakt operatorlar uchun singular qiymatlar ketma-ketligi 0 ga
yaqinlashadi.

Topologik xususiyatlar va uzluksizlik

Topologiya fazoda "yaqinlik" tushunchasini umumlashtirishni ta’minlaydi.
Topologik fazo (X, 1) - to‘plam X va ochiq to‘plamlar tizimi t bo‘lib, ma’lum
aksiomalarga bo‘ysinadi: @ va X ochiq, ixtiyoriy birlashma ochiq, chekli kesishma
ochiq. Metrik fazolardan farqli, topologik fazolarda masofa bo‘lmasligi mumkin.

Metrik fazo (X, d) topologiyani metrika orqali aniglaydi: ochiq to‘plam - har bir
nugqtasi atrofida ochiq shar joylashgan to‘plam. Normali fazo (X, ||-||) metrukani norma
orqali keltirib chiqaradi: d(x, y) = ||x - y||. Shu tariga, normali fazolar € metrik fazolar
C topologik fazolar.

Ketma-ketlik {x,} x ga topologik yaqinlashadi, agar har bir x ni 0‘z ichiga olgan
ochiq to‘plam U uchun N mavjud bo‘lib, n > N bo‘lganda x, € U. Metrik fazolarda bu

ISSN 2181-0842 | IMPACT FACTOR 4.525 78 @) e |



"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

d(xs, X) — 0 ga ekvivalent. Normali fazolarda ||x, - x|| — 0. Hausdorff fazolarida limit
yagona, umumiy topologik fazoda ko‘p limitlar bo‘lishi mumkin.

Davomiy funksiya f: X — Y topologik fazolar orasida: har bir Y dagi ochiq
to‘plam V uchun (V) X da ochiq. Metrik fazolarda: Ve > 0 36 > 0: d(x, Xo) < 0 =
d(f(x), f(xe0)) < & Normali fazolarda chizigli operatorning davomiyligi
chegaralanganlik bilan ekvivalent: ||T|| = sup_{|x|=1} [|Tx|| < o.

Kompaktlik muhim topologik xossa. To‘plam K kompakt, agar har bir ochiq
qoplamadan chekli qism qoplam ajratish mumkin bo‘lsa. Metrik fazolarda Heine-Borel
teoremasi: kompaktlik < ketma-ketlik kompaktligi (har bir ketma-ketlikdan
yaqinlashuvchi qism ketma-ketlik ajratish mumkin). R» da kompaktlik < yopiqlik +
chegaralanganlik.

Kompaktlik davomiy funksiyalarning muhim xossalarini kafolatlaydi. Agar f: K
— R davomiy va K kompakt bo‘lsa, f chegaralangan va ekstremumga erishadi
(Veyrshtrass teoremasi). Agar f: K — Y davomiy va K kompakt bo‘lsa, f(K) ham
kompakt. Agar f: K — Y davomiy, biyek-tiv va K kompakt, Y Hausdorff bo‘lsa, f
gomeomorfizm (teskari ham davomiy).

Banax va Hilbert fazonapu

Banax fazosi - to‘lig normali fazo. To‘liglik: har bir Koshi ketma-ketligi
yaqinlashuvchi. Koshi ketma-ketligi {x,}: Ve> 0 3aIN: m, n> N = ||xm - Xa|| <e&. To‘liq
bo‘lmagan metrik fazolar to‘ldirilishi mumkin (masalan, Q to‘ldirilganida R hosil
bo‘ladi). R», Cr, matritsalar fazosi, L"p fazolari - Banax fazolari.

Banax fazolarida davomiy chiziqli funksionallar to‘plami (dual fazo) ham Banax
fazosi. Hahn-Banax teoremasi: chiziqli funktsionalni kengaytirish normani
oshirmasdan. Natija: har bir x # 0 uchun f € X* mavjud bo‘lib, f(x) = ||x|| va |[f]| = 1.
Bu teorema funksional tahlilning asosiy natijalaridan biri.

Yopiq graf teoremasi: Banax fazolari orasidagi chizigli operator davomiy <
uning grafi yopiq. Ochiq akslantirish teoremasi: Banax fazolari orasidagi surektiv
davomiy chiziqli operator ochiq. Banax-Shteynxaus teoremasi (bir xillik
chegaralanganlik prinsipi): noqta bo‘yicha chegaralangan operatorlar to‘plami norma
bo‘yicha chegaralangan.

Hilbert fazosi - to‘liq ichki ko‘paytmali fazo. Ichki ko‘paytma norma keltirib
chigaradi: ||x|| = V(x, x). Parallelogramm identifikatsiyasi norma ichki ko‘paytmadan
kelib chiqishini tavsiflaydi: |[x + y||*> + ||x - y|]* = 2(|[x|]* + ||y|[*). R® va C" standart ichki
ko‘paytma bilan, L*[a,b] - Hilbert fazolari.

Hilbert fazolarida proyeksiya teoremasi: yopiq konveks to‘plam K va nuqta x
uchun yagona eng yaqin nuqta y € K mavjud. Maxsus holat: yopiq kichik fazo M uchun
X =y + z yoyilmasi mavjud, bu yerday € M, z € ML (M ga ortogonal). Bu proyeksiya
operatori P: H — M ni beradi: Px =y, P>=P, P* = P (ortogonal proyeksiya).
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Riesz tasvir teoremasi: Hilbert fazosida har bir davomiy chiziqli funktional f
yagona vektor y orqali ifodalanadi: f(x) = (x, y). Bu tasvir antichiziqli izomorfizmdir:
H* = H (H ning kompleks qo‘shmasi). Natija: Hilbert fazosi 0‘z-0°ziga dual (o‘xshash
ma’noda). Bu Banax fazolaridan farqli - umumiy Banax fazosida X # X**.

Differensial hisoblash va Frechet hosilasi

Chekli o‘Ichovli fazolarda differensiallanish oddiy: qisman hosilalar mavjudligi.
Cheksiz o‘Ichovli fazolarda umumiyroq tushuncha kerak. Gateaux hosilasi - yo‘nalish
bo‘yicha hosila: D v f(x) = lim_{t—0} [f(x + tv) - f(x)]/t. Bu chizigli operator
yo‘nalish v ga nisbatan.

Frechet hosilasi kuchliroq tushuncha: f: X — Y (Banax fazolari orasida) x da
Frechet differensiallanuvchi, agar chiziqli operator Df(x): X — Y mavjud bo‘lib, |[f(x
+ h) - f(x) - Df(x)h|| = o(|[h|) (ya’ni, ||f(x + h) - {f(x) - Df(x)h||/||h|| — 0, h — 0). Df(x) -
Frechet hosilasi yoki differensial.

Frechet differensiallanish Gateaux differensiallanishdan kuchliroq va
uzluksizlikni nazarda tutadi. Agar f Frechet differensiallanuvchi bo‘lsa, u Gateaux
differensiallanuvchi va Df(x) = D_v f(x) har bir v uchun. Teskari umumiy holda to‘g‘ri
emas. Lekin agar Gateaux hosilasi mavjud va v — D v f(x) davomiy bo‘lsa, Frechet
hosilasi mavjud.

Zanjir qoidasi Frechet hosilasi uchun: agar f: X — Y va gt Y — Z Frechet
differensiallanuvchi bo‘lsa, g o f ham differensiallanuvchi va D(g o f)(x) = Dg(f(x)) o
Df(x). Bu operator kompozitsiyasi. Zanjir qoidasi murakkab funksiyalarning hosilasini
hisoblash uchun asosiy vosita va chuqur o‘rganishda backpropagation ning nazariy
asosi.

O‘rta qiymat teoremasi vektorli holda: agar f: [a,b] — X differensiallanuvchi
bo‘lsa, ||f(b) - f(a)|| < (b - a) sup_{t€[a,b]} ||f’(t)|. Skalar holatdan farqli, to‘g‘ridan-
to‘g‘ri tenglik yo‘q (chunki yo‘nalishlar turlicha bo‘lishi mumkin). Lekin norma bahosi
mavjud va bu ko‘plab tatbiqlarda yetarli.

Yugori tartibli hosilalar: ikkinchi Frechet hosilasi D*f(x): X x X — Y - bilinear
operator. Agar f ikki marta differensiallanuvchi bo‘lsa va ikkinchi hosila davomiy
bo‘lsa, Shvarts teoremasi: Df(x)(h, k) = D*f(x)(k, h) (simmetriklik). Bu gisman
hosilalarning tartibi muhim emasligini bildiradi. Teylor qatori cheksiz o‘lchovda ham:
f(x + h) = f(x) + Df(x)h + %.D*f(x)(h, h) + ...

Implitsit funksiya teoremasi va teskari operator

Implitsit funksiya teoremasi ko‘p o‘zgaruvchili holda: agar F: R» x Rm — Rm
davomiy differensiallanuvchi va F(xo, yo) = 0, Dy F(Xo, yo) teskarilanuvchi bo‘lsa, u
holda xo atrofida yagona funksiya y = f(x) mavjud bo‘lib, F(x, f(x)) = 0 va f
differensiallanuvchi. Hosila: Df(x) = -[D_y F(x, f(x))]' D_x F(x, f(x)).

Bu teorema tenglamalar tizimini "yechish" imkonini beradi - ba’zi
o‘zgaruvchilarni boshqalar orqali ifodalash. Masalan, F(x, y) = x> + y*> - 1 = 0 aylana
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tenglamasi. yo # 0 nuqtada y ni x orqali ifodalash mumkin: y = f(x) = +\(1 - x2). Shartlar:
F differensiallanuvchi, oF/0y # 0.

Banax fazolarida implitsit funksiya teoremasi: agar F: X x Y — Z (Banax fazolari)
davomiy differensiallanuvchi, F(xo, yo) =0 va D _y F(Xo, yo): Y — Z izomorfizm bo‘lsa,
mahalliy implitsit funksiya y = f(x) mavjud. Bu umumiyroq versiya cheksiz o‘lchovli
muammolarda qo‘llaniladi, masalan, differensial tenglamalar nazariyasida.

Teskari operator teoremasi: agar f: X — Y (Banax fazolari orasida) davomiy
differensiallanuvchi va Df(x0): X — Y izomorfizm bo‘lsa, f mahalliy diffeomorfizmdir
(teskari funksiya mavjud va differensiallanuvchi). Hosila: Df !(y) = [Df(f'(y))]". Bu
teorema koordinatalar o‘zgarishini oqlanishni ta’minlaydi.

Bu teoremalar ko‘p qo‘llanmalarga ega: optimallashtirish (Lagranj
ko‘paytuvchilari usuli implitsit funksiya teoremasiga asoslangan), differensial
geometriya (sirt ustida koordinatalar), differensial tenglamalar (yechimlarning
mavjudligi va yagonaligi), iqgtisodiyotda (muvozanat nazariyasi). Ular mahalliy xatti-
harakatni chiziqli approksimatsiya orqali tushunish imkonini beradi.

Konveks tahlil va subdifferensial hisoblash

Konveks to‘plam C: har qanday x, y € C va 0 <A < 1 uchun Ax + (1-A)y € C.
Geometrik ma’no: ikkita nuqtani birlashtiruvchi kesma butunlay to‘plamda joylashgan.
Yarim fazolar, sharlar, polyhedronlar, konuslar - konveks to‘plamlar misollari.
Konveks to‘plamlarning kesishmasi konveks, lekin birlashma emas.

Konveks funksiya f: C — R (C - konveks to‘plam): f(Ax + (1-A)y) < Af(x) + (1-
Mf(y) barcha x, y € C va A € [0,1] uchun. Geometrik ma’no: funksiya grafi har qanday
ikkita nuqta orasidagi vatardan pastda. Agar tengsizlik qat’iy bo‘lsa (x #y va 0 <A <
1 uchun), funksiya qat’iy konveks.

Differensiallanuvchi konveks funksiya uchun: f konveks < f(y) > f(x) + (V{(x),
y - X) barcha x, y uchun (birinchi tartib sharti). Ikki marta differensiallanuvchi funksiya
uchun: f konveks < Hessian matritsasi musbat yarimo‘q (D?*f(x) = 0). Bu shartlar
konvekslikni tekshirish uchun qulay.

Subdifferensial konveks, lekin differensiallanuvchi bo‘lmasligi mumkin bo‘lgan
funksiyalar uchun umumlashtirilgan hosila. Subgradient g € X*: f(y) > f(x) + (g, y - X)
barcha y uchun. Subdifferensial 0f(x) - barcha subgradientlar to‘plami. Bu to‘plam
konveks va yopiq (bo‘sh bo‘lishi mumkin). Agar f x da differensiallanuvchi bo‘lsa,
of(x) = {V1(x)} (yagona element).

Konveks tahlil qoidalari: o(f + g)(x) 2 of(x) + 0g(x), d(af)(x) = adof(x) (a > 0),
zanjir qoidasi (maxsus shartlar ostida). Bu qoidalar optimallashda qo‘llaniladi. Optimal
shart: x* - f ning global minimumi < 0 € of(x*). Bu differensiallanuvchi holatdagi
Vi(x*) = 0 shartining umumlashtirilishi.

Konjugat funksiya f*: X* — R quyidagicha aniqlanadi: f*(y*) =sup_ {x€X} [(y*,
x) - f(x)]. Bu Legendre transformatsiyasining umumlashtirilishi. £* har doim konveks
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va yopiq. Fenchel-Moreau teoremasi: agar f konveks, yopiq va proper bo‘lsa, £** = f.
Konjugat funksiya duallik nazariyasida va optimallashda muhim rol o‘ynaydi.

Proyeksiya konveks to‘plamga P C(x) = argmin_{y€C} |x - y|| - X ga eng yaqin
nuqta C da. Agar C yopiq va konveks bo‘lsa, proyeksiya yagona va davomiy.
Proyeksiya xususiyati: (x - P C(x), y - P_C(x)) < 0 barcha y € C uchun (tik burchak
sharti). Proyeksiya ko‘plab algoritmlar (proyeksiyali gradient, ADMM) ning asosiy
komponentidir.

Sobolev fazolari va zaif differensiallanish

Klassik differensiallanish ba’zan juda qat’iy: ko‘plab funksiyalar (masalan,
piecewise differensiallanuvchi funksiyalar) klassik hosilaga ega emas. Zaif hosila
tushunchasi umumiyroq va differensial tenglamalar nazariyasida muhim.

Zaif hosila: funksiya u € L' {loc}(Q) ning zaif hosilasi v € L' {loc}(Q) bo‘lib,
| Qudp/ox idx =-] Qv ¢ dx barcha silliq, kompakt nosimlikli test funksiyalar ¢
uchun. Bu integratsiya bo‘yicha qismlarga ajratish formulasidan kelib chigadi. Agar u
klassik differensiallanuvchi bo‘lsa, zaif hosila klassik hosilaga teng.

Sobolev fazosi W {k,p}(Q2) - barcha funksiyalar u € L"p(€2) to‘plami bo‘lib, k-
tartibli barcha zaif hosilalari L*p(Q) ga tegishli. Norma: ||u||{W™kp}} = (2{|oj<k}
|ID*a ul|_p”p)*{1/p}, bu yerda a - multi-indeks, D*a - zaif hosila. W"{k,p}(€2) Banax
fazosi. WM {k,2}(Q) = H"k(Q) Hilbert fazosi (Sobolev-Hilbert fazosi).

Sobolev kiritish teoremasi: ma’lum shartlar ostida W”{k,p}(Q) < L*q(Q2) yoki
WMk pt(Q) € C'm(Q) (davomiy funksiyalar fazosi). Masalan, W"*{1,p}(Q) C
LMp*}(Q), bu yerda p* = np/(n-p) (p < n uchun) - Sobolev ko‘rsatkichi. Agar kp >n
bo‘lsa, W™ {k,p}(Q) c C(Q) - funksiyalar davomiy. Bu natijalar PDE yechimlarining
silligligini o‘rganishda muhim.

Rellich-Kondrachov kompaktlik teoremasi: ma’lum shartlar ostida W”{k,p}(Q)
dan L"q(Q) ga kirish kompakt (q < p* uchun). Bu demak, chegaralangan ketma-ketlik
Wn{k,p} da yaqinlashuvchi qism ketma-ketlikka ega L"q da. Kompaktlik ko‘plab
mavjudlik teoremalarida muhim (masalan, variatsion masalalarda).

Poincaré tengsizligi: Q) - chegaralangan soha uchun |[u||{L"p} < C|| Vu||{L™p} (u
ning o‘rtachasi nolga teng deb faraz qilganda). Bu tengsizlik funksiya va uning hosilasi
o‘rtasida bog‘liglik o‘rnatadi. Friedrichs tengsizligi: |[u|[{W"{1,p}} < C|| Vu||[{L"p} (u
chegarada nolga teng bo‘lsa). Bu tengsizliklar energiya baholarida qo‘llaniladi.

Sobolev fazolari PDE nazariyasining asosi hisoblanadi. Zaif yechimlar Sobolev
fazolarida qidiriladi. Ko‘plab klassik muammolar (Dirichlet, Neumann masalalari)
Sobolev fazolarida yaxshi qo‘yilgan. Variatsion formulatsiyalar (Galerkin usuli, chekli
elementlar usuli) Sobolev fazolarida ishlaydi. Zamonaviy PDE nazariyasi Sobolev
fazolarisiz tasavvur qilinmaydi.

Xulosa
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Ko‘p o‘lchovli ma’lumot massivlarida belgilangan funksiyalarning algebraik va
analitik xususiyatlarini tadqiq qilish natijasida quyidagi fundamental xulosalarga
kelamiz.

Algebraik strukturalar massiv operatsiyalarining asosiy qonuniyatlarini belgilaydi.
Guruh strukturasi qo‘shish operatsiyasining xususiyatlarini, halga strukturasi ikkala
operatsiyaning o‘zaro ta’sirini, maydon strukturasi esa to‘liq algebraik tizimni
tavsiflaydi. Vektorli fazolar chiziqli algebra uchun tabily muhitni yaratadi. Modullar
nazariyasi vektorli fazolarni umumlashtiradi va halqalar ustida chiziqli algebrani
rivojlantiradi.

Tensorli algebra yuqori o‘lchovli massivlar uchun zarur matematik apparatni
tagdim etadi. Tensorli ko‘paytma, tashqi algebra, simmetrik algebra turli algebraik
tuzilmalarni beradi. Ko‘p chiziqgli xaritalashlar tensorlar bilan ishlashning tabiiy tili
hisoblanadi. Dual fazolar va adjoynt operatorlar algebraik strukturalarning chuqur
xususiyatlarini ochib beradi.

Operator algebralari chiziqli operatorlarning murakkab tuzilmasini o‘rganadi.
Banax va C*-algebralar funksional tahlilning muhim ob’ektlaridir. Spektral nazariya
operatorlarning invariantlarini tavsiflaydi. Spektral teorema o‘z-o‘ziga adjoynt
operatorlarni diagonal shaklga keltirish imkonini beradi. Singular qiymatlar har qanday
operator uchun optimal yoyilmani ta’minlaydi.

Topologik xususiyatlar yaqinlik va uzluksizlik tushunchalarini umumlashtiradi.
Metrik va normali fazolar konkret yaqinlik o‘Ichovlarini beradi. Kompaktlik ko‘plab
muhim teoremalar uchun zarur shart. Davomiy funksiyalar topologik strukturani
saglaydi. To‘liglik Koshi ketma-ketliklarining yaqinlashishini kafolatlaydi.

Banax va Hilbert fazolari funksional tahlilning asosiy ob’ektlaridir. Hahn-Banax,
yopiq graf, ochiq akslantirish teoremalari Banax fazolarining fundamental natijalari.
Proyeksiya teoremasi va Riesz tasviri Hilbert fazolarining maxsus xususiyatlarini
ko‘rsatadi. Bu fazolar cheksiz o‘lchovli chizigli algebraning tabily muhiti.

Frechet differensiallash cheksiz o‘lchovli fazolarda differensial hisobni
rivojlantiradi. Zanjir qoidasi murakkab kompozitsiyalarning hosilalarini hisoblash
imkonini beradi. Implitsit funksiya va teskari operator teoremalari mahalliy strukturani
tushunishga yordam beradi. Yuqori tartibli hosilalar va Teylor qatorlari mahalliy
approksimatsiyani ta’minlaydi.

Konveks tahlil optimallash nazariyasining asosini tashkil etadi. Subdifferensial
differensiallanmaydigan konveks funksiyalar uchun umumlashtirilgan hosila beradi.
Konjugat funksiya duallik nazariyasida markaziy rol o‘ynaydi. Proyeksiya operatori
ko‘plab algoritmlarning asosiy komponenti. Konveks optimallash samarali
yechiladigan masalalar sinfini belgilaydi.

Sobolev fazolari zaif differensiallanish tushunchasini joriy qiladi va differensial
tenglamalar nazariyasining tabily muhitini yaratadi. Kiritish va kompaktlik teoremalari

ISSN 2181-0842 | IMPACT FACTOR 4.525 83 @) e |



"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

yechimlarning silligligini o‘rganish imkonini beradi. Poincaré va Friedrichs
tengsizliklari energiya baholarida muhim. Zaif yechimlar tushunchasi klassik
yechimlar mavjud bo‘lmagan holatlarda qo‘llaniladi.

Umumiy xulosa: ko‘p oflchovli ma’lumot massivlarida belgilangan
funksiyalarning algebraik va analitik xususiyatlari chuqur va boy nazariy strukturaga
ega. Algebraik yondashuv operatsiyalarning qonuniyatlarini, analitik yondashuv esa
uzluksizlik va differensiallanish xossalarini o‘rganadi. Bu ikki yondashuv birgalikda
zamonaviy ma’lumotlar fani, mashinali o‘rganish va ilmiy hisoblashlar uchun
mustahkam matematik asos yaratadi.
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