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Annotatsiya: Ushbu maqolada ko‘p o‘lchovli ma’lumot massivlarida belgilangan 

funksiyalarning algebraik va analitik xususiyatlari kompleks tadqiq qilingan. Massiv 

funksiyalarining algebraik tuzilmasi, guruh va halqa xususiyatlari, chiziqli va bilinear 

operatorlar, analitik davomiylik va differensiallanish xossalari chuqur o‘rganilgan. 

Tadqiqotda funksiyalarning kommutativlik, assotsiativlik, distributivlik kabi algebraik 

qonunlari, ularning uzluksizligi, limitlar nazariyasi va yaqinlashish masalalari tahlil 

qilingan. Maqolada tensorli algebraning asosiy qonunlari, ko‘p chiziqli xaritalashlar, 

funksional fazolar nazariyasi va operatorlar spektral xususiyatlari batafsil ko‘rib 

chiqilgan. Nazariy natijalar zamonaviy ma’lumotlar tahlili, mashinali o‘rganish va 

ilmiy hisoblashlarda qo‘llaniladigan massiv operatsiyalariga mustahkam matematik 

asos yaratadi. 
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Abstract: This article presents a comprehensive study of the algebraic and 

analytical properties of functions defined on multidimensional data arrays. The 

algebraic structure of array functions, group and ring properties, linear and bilinear 

operators, analytic continuation, and differentiability are thoroughly examined. The 

study analyzes algebraic laws such as commutativity, associativity, and distributivity, 

as well as continuity, limit theory, and convergence issues. The paper provides a 

detailed discussion of the fundamental laws of tensor algebra, multilinear mappings, 

the theory of functional spaces, and the spectral properties of operators. The theoretical 

results provide a solid mathematical foundation for array operations used in modern 

data analysis, machine learning, and scientific computing. 
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Kirish 

Ko‘p o‘lchovli ma’lumot massivlari zamonaviy axborot texnologiyalarining 

asosiy strukturaviy elementlari bo‘lib, ular ustida belgilangan funksiyalar murakkab 

algebraik va analitik xususiyatlarga ega. Bu funksiyalarning nazariy asoslarini chuqur 

tushunish samarali algoritmlar yaratish, ma’lumotlarni to‘g‘ri qayta ishlash va 

matematik qonuniyatlarni aniqlash uchun zarurdir. 

Algebraik yondashuv massiv funksiyalarini algebraik strukturalar nuqtai 

nazaridan o‘rganadi. Massivlar to‘plami guruh, halqa yoki maydon strukturasiga ega 

bo‘lishi mumkin. Qo‘shish va ko‘paytirish operatsiyalari algebraik qonunlarga 

bo‘ysinadi. Chiziqli operatorlar vektorli fazolar orasidagi strukturani saqlovchi 

xaritalashlardir. Tensorli algebra yuqori o‘lchovli massivlar uchun algebraik apparatni 

taqdim etadi. 

Analitik yondashuv esa funksiyalarning uzluksizligi, differensiallanishi, 

integratsiya qobiliyati kabi xususiyatlarni o‘rganadi. Limitlar nazariyasi ketma-

ketliklarning yaqinlashishini tavsiflaydi. Metrik va normali fazolar yaqinlik 

tushunchasini aniqlaydi. Davomiy funksiyalar kichik o‘zgarishlarga barqaror javob 

beradi. Differensiallanuvchi funksiyalar mahalliy chiziqli approksimatsiyaga ega. 

Ma’lumot massivlari kontekstida algebraik va analitik xususiyatlarning birgalikda 

o‘rganilishi muhim ahamiyatga ega. Ma’lumotlar tuzilmasi algebraik strukturani 

belgilaydi. Operatsiyalar algebraik qonunlarga bo‘ysinishi kerak. Ayni paytda, amaliy 

hisoblashlarda uzluksizlik va differensiallanish xossalari zarur. Optimallash 

algoritmlari gradient va Hessian ma’lumotlaridan foydalanadi. Konvergentsiya tahlili 

limitlar nazariyasiga asoslanadi. 

Zamonaviy ma’lumotlar fani katta hajmdagi ko‘p o‘lchovli massivlar bilan 

ishlaydi. Tasvirlar, videolar, vaqt qatorlari, ijtimoiy tarmoq ma’lumotlari - barchasi 

ko‘p o‘lchovli strukturalarga ega. Sun’iy neyron tarmoqlar tensorlar bilan ishlaydi. 

Chuqur o‘rganish algebraik va analitik xususiyatlardan keng foydalanadi. Gradient 

tushish, orqaga tarqalish, batch normalizatsiya kabi usullar bu xususiyatlarga 

asoslanadi. 

Ushbu tadqiqotning maqsadi ko‘p o‘lchovli ma’lumot massivlarida belgilangan 

funksiyalarning algebraik va analitik xususiyatlarini sistemali ravishda o‘rganish, 

ularning nazariy asoslarini yaratish va amaliy qo‘llanmalarga matematik fundament 

berishdan iborat. Tadqiqot ob’ekti sifatida turli algebraik strukturalar (guruhlar, 

halqalar, maydonlar, modullar) va analitik xususiyatlar (uzluksizlik, differensiallanish, 

integratsiya) tanlab olingan. 
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Asosiy qism 

Algebraik strukturalar va massivlar 

Algebraik struktura - to‘plamda belgilangan operatsiyalar va ular 

qanoatlantiruvchi aksiomalar majmuasi. Ko‘p o‘lchovli massivlar turli algebraik 

strukturalarga ega bo‘lishi mumkin. 

Guruh (G, *) - to‘plam G va operatsiya * bo‘lib, quyidagi aksiomalarga ega: 

yopiqlik (a, b ∈ G ⇒ a * b ∈ G), assotsiativlik ((a * b) * c = a * (b * c)), neytral element 

mavjud (∃e: a * e = e * a = a barcha a ∈ G uchun), teskari element mavjud (∃a⁻¹: a * 

a⁻¹ = a⁻¹ * a = e har bir a ∈ G uchun). Agar yana kommutativlik (a * b = b * a) bajarilsa, 

guruh kommutativ yoki Abel guruhi deyiladi. 

n o‘lchovli vektorlar to‘plami Rⁿ qo‘shish operatsiyasi bilan Abel guruhini tashkil 

etadi. Neytral element - nol vektor, teskari element - manfiy vektor. m × n matritsalar 

to‘plami ham qo‘shish bo‘yicha Abel guruhi. Bu xossa massiv operatsiyalarining 

ko‘plab xususiyatlarini tushuntirishga yordam beradi. 

Halqa (R, +, ·) - ikkita operatsiya bilan jihozlangan to‘plam bo‘lib: (R, +) - Abel 

guruhi, (R, ·) - yarim guruh (yopiqlik va assotsiativlik), distributivlik qonunlari 

bajariladi: a·(b + c) = a·b + a·c va (a + b)·c = a·c + b·c. Agar ko‘paytirish kommutativ 

bo‘lsa, halqa kommutativ deyiladi. Agar birlik element mavjud bo‘lsa, halqa birlikli 

deyiladi. 

Matritsalar to‘plami M_n(R) qo‘shish va matritsali ko‘paytirish bilan birlikli 

(lekin kommutativ emas) halqani tashkil etadi. Bu halqada AB ≠ BA (umumiy holda). 

Bo‘luvchilar nolga ega: AB = 0 bo‘lishi mumkin, lekin A ≠ 0 va B ≠ 0. Bu xususiyat 

matritsali tenglamalarni yechishda e’tiborga olinishi kerak. 

Maydon (F, +, ·) - kommutativ halqa bo‘lib, noldan farqli har bir element teskari 

ko‘paytirish elementiga ega: a ≠ 0 ⇒ ∃a⁻¹: a · a⁻¹ = 1. Haqiqiy sonlar R va kompleks 

sonlar C maydonlardir. Chekli maydonlar ham mavjud (masalan, Z_p, bu yerda p - tub 

son). Maydonlar algebraik strukturalarning eng "to‘liq"lari hisoblanadi. 

Vektorli fazo V maydon F ustida qo‘shish va skalyarga ko‘paytirish operatsiyalari 

bilan aniqlangan algebraik struktura. (V, +) - Abel guruhi, skalyarga ko‘paytirish uchun: 

α(βv) = (αβ)v, 1·v = v, (α + β)v = αv + βv, α(u + v) = αu + αv. Rⁿ, matritsalar fazosi, 

funksiyalar fazosi - barchasi vektorli fazolar. 

Modullar va tensorli algebra 

Modul - vektorli fazoning umumlashtirilishi bo‘lib, maydon o‘rniga halqa ustida 

aniqlanadi. R-modul M (bu yerda R - halqa) - Abel guruhi (M, +) va halqa R ning M 

ga ta’siri bo‘lib, vektorli fazodagi kabi qonunlar bajariladi. Agar R kommutativ halqa 

bo‘lsa, modul "vektorli fazoga yaqin" bo‘ladi. 

Matritsalar ustida aniqlanmish modullar chiziqli algebraning ko‘plab natijalarini 

umumlashtiradi. Masalan, Rⁿ modul Z halqa ustida. Torsion modullari, erkin modullari, 

projektiv modullari kabi tushunchalar modullar nazariyasida muhim. 
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Tensorli ko‘paytma ikkita vektorli fazo (yoki modul) V va W dan yangi vektorli 

fazo V ⊗ W hosil qiladi. Tensor v ⊗ w "elementar tensor" deyiladi. Umumiy tensor: 

Σᵢ vᵢ ⊗ wᵢ ko‘rinishda. Tensorli ko‘paytma bilinear: (v₁ + v₂) ⊗ w = v₁ ⊗ w + v₂ ⊗ 

w, v ⊗ (w₁ + w₂) = v ⊗ w₁ + v ⊗ w₂, (αv) ⊗ w = v ⊗ (αw) = α(v ⊗ w). 

Tensorlar daraja (yoki tartib) bilan tavsiflanadi. 0-darajali tensor - skalar, 1-

darajali tensor - vektor, 2-darajali tensor - matritsa, 3-darajali tensor - "kub", va hokazo. 

(p,q)-tipli tensor p marta kontravariant va q marta kovariant. Tensorlar fazosi T^p_q(V) 

= V ⊗ ... ⊗ V ⊗ V* ⊗ ... ⊗ V* (p marta V, q marta V*, bu yerda V* - dual fazo). 

Tensorli algebra T(V) = ⊕_{k=0}^∞ T^k(V) barcha darajali tensorlarning 

to‘g‘ridan-to‘g‘ri yig‘indisi. Bu gradalangan algebra bo‘lib, tensorli ko‘paytma bilan. 

Tensorli algebra universal xossaga ega: har qanday bilinear xaritalash tensorli 

ko‘paytma orqali ifodalanishi mumkin. 

Tashqi algebra Λ(V) tensorli algebradan antisimmetriklash orqali hosil qilinadi: v 

∧ w = -w ∧ v. Bu geometriyada (differensial formalar), fizikada (elektromagnetizm) va 

informatikada (ma’lumotlar strukturalari) qo‘llaniladi. Simmetrik algebra S(V) esa 

simmetriklash orqali: vw = wv. Bu algebra polinomlar algebrasiga izomorf. 

Chiziqli va ko‘p chiziqli xaritalashlar 

Chiziqli xaritalash (yoki chiziqli operator) T: V → W vektorli fazolar orasidagi 

xaritalash bo‘lib, T(αu + βv) = αT(u) + βT(v) barcha α, β ∈ F va u, v ∈ V uchun. 

Chiziqli operatorlar to‘plami Hom(V, W) o‘zi vektorli fazo tashkil etadi. 

Chiziqli operatorning yadrosi Ker(T) = {v ∈ V : T(v) = 0} - V ning vektorli kichik 

fazosi. Tasvir Im(T) = {w ∈ W : ∃v ∈ V, T(v) = w} - W ning vektorli kichik fazosi. 

O‘lchamlar teoremasi: dim(V) = dim(Ker(T)) + dim(Im(T)). Bu fundamental natija 

chiziqli operatorlarning strukturasini tushunishga yordam beradi. 

Bilinear xaritalash B: V × W → U bo‘lib, har bir argumentda alohida chiziqli: 

B(αv₁ + βv₂, w) = αB(v₁, w) + βB(v₂, w) va B(v, αw₁ + βw₂) = αB(v, w₁) + βB(v, w₂). 

Ichki ko‘paytma, matritsalarni ko‘paytirish - bilinear xaritalashlar misollari. Bilinear 

formalar (U = F holda) kvadratik formalarga olib keladi va geometriyada muhim. 

Ko‘p chiziqli (multilinear) xaritalash f: V₁ × V₂ × ... × Vₖ → W har bir argumentda 

alohida chiziqli. Determinant - ko‘p chiziqli va antisimmetrik xaritalash. Tensorlarni 

qisqartirish (contraction) - ko‘p chiziqli operatsiya. Ko‘p chiziqli algebra tensorli 

hisoblashlarning asosini tashkil etadi. 

Dual fazo V* = Hom(V, F) - barcha chiziqli funksionallar to‘plami. Agar V chekli 

o‘lchovli bo‘lsa, V** ≅ V (tabiiy izomorfizm). Dual bazis: agar {e₁, ..., eₙ} - V ning 

bazisi bo‘lsa, dual bazis {e¹, ..., eⁿ} quyidagicha: eⁱ(eⱼ) = δⱼⁱ (Kroneker deltasi). Har 

qanday vektor v = Σᵢ vᵢeᵢ va har qanday ko‘vektor α = Σᵢ αᵢeⁱ. 

Adjoynt (qo‘shma) operator T*: W* → V* chiziqli operator T: V → W uchun 

quyidagicha aniqlanadi: (Tφ)(v) = φ(T(v)) barcha φ ∈ W va v ∈ V uchun. Ichki 

ko‘paytmali fazoda adjoynt ⟨Tv, w⟩ = ⟨v, Tw⟩ ni qanoatlantiradi. O‘z-o‘ziga adjoynt 
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operatorlar (T = T) maxsus ahamiyatga ega - ularning xos qiymatlari haqiqiy, xos 

vektorlari ortogonal. 

Operatorlar algebralari va spektral nazariya 

Operator algebra - chiziqli operatorlar to‘plami bo‘lib, qo‘shish, skalyarga 

ko‘paytirish va kompozitsiya operatsiyalari bilan yopiq. Agar bu to‘plam norma bilan 

jihozlangan va to‘liq bo‘lsa, Banax algebrasi deyiladi. Agar ichki ko‘paytma va 

involюtsiya (-operatsiya) mavjud bo‘lsa, C-algebra deyiladi. 

Matritsalar algebrasi M_n(C) eng oddiy chekli o‘lchovli operator algebrasi. 

Cheksiz o‘lchovli Hilbert fazosidagi chegaralangan operatorlar B(H) - C*-algebra. 

Kompakt operatorlar K(H) - B(H) ning ideal elementi. Von Neumann algebralari - 

kuchli operator topologiyada yopiq *-algebralar, kvant mexanikasida muhim. 

Spektr operatorning muhim invarianti. Operator T ning spektri σ(T) = {λ ∈ C : (T 

- λI) teskarilanuvchi emas} to‘plami. Nuqta spektri (xos qiyatlar), uzluksiz spektr, 

qoldiq spektr - spektrning qismlari. Chekli o‘lchovli fazoda spektr faqat xos qiyatlardan 

iborat. Cheksiz o‘lchovda spektr murakkabbroq bo‘lishi mumkin. 

Spektral radius r(T) = sup{|λ| : λ ∈ σ(T)} - spektrning eng katta absolyut qiymati. 

Gelfand formulasi: r(T) = lim_{n→∞} ||T^n||^{1/n}. Spektral radius operator normasi 

bilan bog‘liq: r(T) ≤ ||T||, tenglik self-adjoynt operatorlar uchun. 

Spektral teorema o‘z-o‘ziga adjoynt operatorlar uchun: kompakt o‘z-o‘ziga 

adjoynt operator T spektral yoyilmaga ega: T = Σᵢ λᵢ Pᵢ, bu yerda λᵢ - xos qiyatlar, Pᵢ - 

xos kichik fazolarga proyeksiyalar. Umumiy (chegaralanmagan) o‘z-o‘ziga adjoynt 

operatorlar uchun spektral o‘lchov nazariyasi qo‘llaniladi: T = ∫ λ dE(λ), bu yerda E - 

proyeksiyali o‘lchov. 

Singular qiymatlar har qanday chegaralangan operator uchun mavjud: T = Σᵢ σᵢ 

uᵢ⟨vᵢ, ·⟩, bu yerda σᵢ - singular qiymatlar (kamayuvchi tartibda), uᵢ va vᵢ - ortonormal 

vektorlar. Bu yoyilma har qanday operatorni sodda operatorlar yig‘indisi sifatida 

ifodalaydi. Kompakt operatorlar uchun singular qiymatlar ketma-ketligi 0 ga 

yaqinlashadi. 

Topologik xususiyatlar va uzluksizlik 

Topologiya fazoda "yaqinlik" tushunchasini umumlashtirishni ta’minlaydi. 

Topologik fazo (X, τ) - to‘plam X va ochiq to‘plamlar tizimi τ bo‘lib, ma’lum 

aksiomalarga bo‘ysinadi: ∅ va X ochiq, ixtiyoriy birlashma ochiq, chekli kesishma 

ochiq. Metrik fazolardan farqli, topologik fazolarda masofa bo‘lmasligi mumkin. 

Metrik fazo (X, d) topologiyani metrika orqali aniqlaydi: ochiq to‘plam - har bir 

nuqtasi atrofida ochiq shar joylashgan to‘plam. Normali fazo (X, ||·||) metrикani norma 

orqali keltirib chiqaradi: d(x, y) = ||x - y||. Shu tariqa, normali fazolar ⊂ metrik fazolar 

⊂ topologik fazolar. 

Ketma-ketlik {xₙ} x ga topologik yaqinlashadi, agar har bir x ni o‘z ichiga olgan 

ochiq to‘plam U uchun N mavjud bo‘lib, n > N bo‘lganda xₙ ∈ U. Metrik fazolarda bu 
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d(xₙ, x) → 0 ga ekvivalent. Normali fazolarda ||xₙ - x|| → 0. Hausdorff fazolarida limit 

yagona, umumiy topologik fazoda ko‘p limitlar bo‘lishi mumkin. 

Davomiy funksiya f: X → Y topologik fazolar orasida: har bir Y dagi ochiq 

to‘plam V uchun f⁻¹(V) X da ochiq. Metrik fazolarda: ∀ε > 0 ∃δ > 0: d(x, x₀) < δ ⇒ 

d(f(x), f(x₀)) < ε. Normali fazolarda chiziqli operatorning davomiyligi 

chegaralanganlik bilan ekvivalent: ||T|| = sup_{||x||=1} ||Tx|| < ∞. 

Kompaktlik muhim topologik xossa. To‘plam K kompakt, agar har bir ochiq 

qoplamadan chekli qism qoplam ajratish mumkin bo‘lsa. Metrik fazolarda Heine-Borel 

teoremasi: kompaktlik ⟺ ketma-ketlik kompaktligi (har bir ketma-ketlikdan 

yaqinlashuvchi qism ketma-ketlik ajratish mumkin). Rⁿ da kompaktlik ⟺ yopiqlik + 

chegaralanganlik. 

Kompaktlik davomiy funksiyalarning muhim xossalarini kafolatlaydi. Agar f: K 

→ R davomiy va K kompakt bo‘lsa, f chegaralangan va ekstremumga erishadi 

(Veyrshtrass teoremasi). Agar f: K → Y davomiy va K kompakt bo‘lsa, f(K) ham 

kompakt. Agar f: K → Y davomiy, biyek-tiv va K kompakt, Y Hausdorff bo‘lsa, f 

gomeomorfizm (teskari ham davomiy). 

Banax va Hilbert fazoлари 

Banax fazosi - to‘liq normali fazo. To‘liqlik: har bir Koshi ketma-ketligi 

yaqinlashuvchi. Koshi ketma-ketligi {xₙ}: ∀ε > 0 ∃N: m, n > N ⇒ ||xₘ - xₙ|| < ε. To‘liq 

bo‘lmagan metrik fazolar to‘ldirilishi mumkin (masalan, Q to‘ldirilganida R hosil 

bo‘ladi). Rⁿ, Cⁿ, matritsalar fazosi, L^p fazolari - Banax fazolari. 

Banax fazolarida davomiy chiziqli funksionallar to‘plami (dual fazo) ham Banax 

fazosi. Hahn-Banax teoremasi: chiziqli funktsionalni kengaytirish normani 

oshirmasdan. Natija: har bir x ≠ 0 uchun f ∈ X* mavjud bo‘lib, f(x) = ||x|| va ||f|| = 1. 

Bu teorema funksional tahlilning asosiy natijalaridan biri. 

Yopiq graf teoremasi: Banax fazolari orasidagi chiziqli operator davomiy ⟺ 

uning grafi yopiq. Ochiq akslantirish teoremasi: Banax fazolari orasidagi surektiv 

davomiy chiziqli operator ochiq. Banax-Shtеynxaus teoremasi (bir xillik 

chegaralanganlik prinsipi): noqta bo‘yicha chegaralangan operatorlar to‘plami norma 

bo‘yicha chegaralangan. 

Hilbert fazosi - to‘liq ichki ko‘paytmali fazo. Ichki ko‘paytma norma keltirib 

chiqaradi: ||x|| = √⟨x, x⟩. Parallelogramm identifikatsiyasi norma ichki ko‘paytmadan 

kelib chiqishini tavsiflaydi: ||x + y||² + ||x - y||² = 2(||x||² + ||y||²). Rⁿ va Cⁿ standart ichki 

ko‘paytma bilan, L²[a,b] - Hilbert fazolari. 

Hilbert fazolarida proyeksiya teoremasi: yopiq konveks to‘plam K va nuqta x 

uchun yagona eng yaqin nuqta y ∈ K mavjud. Maxsus holat: yopiq kichik fazo M uchun 

x = y + z yoyilmasi mavjud, bu yerda y ∈ M, z ∈ M⊥ (M ga ortogonal). Bu proyeksiya 

operatori P: H → M ni beradi: Px = y, P² = P, P* = P (ortogonal proyeksiya). 
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Riesz tasvir teoremasi: Hilbert fazosida har bir davomiy chiziqli funktional f 

yagona vektor y orqali ifodalanadi: f(x) = ⟨x, y⟩. Bu tasvir antichiziqli izomorfizmdir: 

H* ≅ H̄ (H ning kompleks qo‘shmasi). Natija: Hilbert fazosi o‘z-o‘ziga dual (o‘xshash 

ma’noda). Bu Banax fazolaridan farqli - umumiy Banax fazosida X ≠ X**. 

Differensial hisoblash va Frechet hosilasi 

Chekli o‘lchovli fazolarda differensiallanish oddiy: qisman hosilalar mavjudligi. 

Cheksiz o‘lchovli fazolarda umumiyroq tushuncha kerak. Gâteaux hosilasi - yo‘nalish 

bo‘yicha hosila: D_v f(x) = lim_{t→0} [f(x + tv) - f(x)]/t. Bu chiziqli operator 

yo‘nalish v ga nisbatan. 

Frechet hosilasi kuchliroq tushuncha: f: X → Y (Banax fazolari orasida) x da 

Frechet differensiallanuvchi, agar chiziqli operator Df(x): X → Y mavjud bo‘lib, ||f(x 

+ h) - f(x) - Df(x)h|| = o(||h||) (ya’ni, ||f(x + h) - f(x) - Df(x)h||/||h|| → 0, h → 0). Df(x) - 

Frechet hosilasi yoki differensial. 

Frechet differensiallanish Gâteaux differensiallanishdan kuchliroq va 

uzluksizlikni nazarda tutadi. Agar f Frechet differensiallanuvchi bo‘lsa, u Gâteaux 

differensiallanuvchi va Df(x) = D_v f(x) har bir v uchun. Teskari umumiy holda to‘g‘ri 

emas. Lekin agar Gâteaux hosilasi mavjud va v → D_v f(x) davomiy bo‘lsa, Frechet 

hosilasi mavjud. 

Zanjir qoidasi Frechet hosilasi uchun: agar f: X → Y va g: Y → Z Frechet 

differensiallanuvchi bo‘lsa, g ∘ f ham differensiallanuvchi va D(g ∘ f)(x) = Dg(f(x)) ∘ 

Df(x). Bu operator kompozitsiyasi. Zanjir qoidasi murakkab funksiyalarning hosilasini 

hisoblash uchun asosiy vosita va chuqur o‘rganishda backpropagation ning nazariy 

asosi. 

O‘rta qiymat teoremasi vektorli holda: agar f: [a,b] → X differensiallanuvchi 

bo‘lsa, ||f(b) - f(a)|| ≤ (b - a) sup_{t∈[a,b]} ||f’(t)||. Skalar holatdan farqli, to‘g‘ridan-

to‘g‘ri tenglik yo‘q (chunki yo‘nalishlar turlicha bo‘lishi mumkin). Lekin norma bahosi 

mavjud va bu ko‘plab tatbiqlarda yetarli. 

Yuqori tartibli hosilalar: ikkinchi Frechet hosilasi D²f(x): X × X → Y - bilinear 

operator. Agar f ikki marta differensiallanuvchi bo‘lsa va ikkinchi hosila davomiy 

bo‘lsa, Shvarts teoremasi: D²f(x)(h, k) = D²f(x)(k, h) (simmetriklik). Bu qisman 

hosilalarning tartibi muhim emasligini bildiradi. Teylor qatori cheksiz o‘lchovda ham: 

f(x + h) = f(x) + Df(x)h + ½D²f(x)(h, h) + ... 

Implitsit funksiya teoremasi va teskari operator 

Implitsit funksiya teoremasi ko‘p o‘zgaruvchili holda: agar F: Rⁿ × Rᵐ → Rᵐ 

davomiy differensiallanuvchi va F(x₀, y₀) = 0, D_y F(x₀, y₀) teskarilanuvchi bo‘lsa, u 

holda x₀ atrofida yagona funksiya y = f(x) mavjud bo‘lib, F(x, f(x)) = 0 va f 

differensiallanuvchi. Hosila: Df(x) = -[D_y F(x, f(x))]⁻¹ D_x F(x, f(x)). 

Bu teorema tenglamalar tizimini "yechish" imkonini beradi - ba’zi 

o‘zgaruvchilarni boshqalar orqali ifodalash. Masalan, F(x, y) = x² + y² - 1 = 0 aylana 
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tenglamasi. y₀ ≠ 0 nuqtada y ni x orqali ifodalash mumkin: y = f(x) = ±√(1 - x²). Shartlar: 

F differensiallanuvchi, ∂F/∂y ≠ 0. 

Banax fazolarida implitsit funksiya teoremasi: agar F: X × Y → Z (Banax fazolari) 

davomiy differensiallanuvchi, F(x₀, y₀) = 0 va D_y F(x₀, y₀): Y → Z izomorfizm bo‘lsa, 

mahalliy implitsit funksiya y = f(x) mavjud. Bu umumiyroq versiya cheksiz o‘lchovli 

muammolarda qo‘llaniladi, masalan, differensial tenglamalar nazariyasida. 

Teskari operator teoremasi: agar f: X → Y (Banax fazolari orasida) davomiy 

differensiallanuvchi va Df(x₀): X → Y izomorfizm bo‘lsa, f mahalliy diffeomorfizmdir 

(teskari funksiya mavjud va differensiallanuvchi). Hosila: Df⁻¹(y) = [Df(f⁻¹(y))]⁻¹. Bu 

teorema koordinatalar o‘zgarishini oqlanishni ta’minlaydi. 

Bu teoremalar ko‘p qo‘llanmalarga ega: optimallashtirish (Lagranj 

ko‘paytuvchilari usuli implitsit funksiya teoremasiga asoslangan), differensial 

geometriya (sirt ustida koordinatalar), differensial tenglamalar (yechimlarning 

mavjudligi va yagonaligi), iqtisodiyotda (muvozanat nazariyasi). Ular mahalliy xatti-

harakatni chiziqli approksimatsiya orqali tushunish imkonini beradi. 

Konveks tahlil va subdifferensial hisoblash 

Konveks to‘plam C: har qanday x, y ∈ C va 0 ≤ λ ≤ 1 uchun λx + (1-λ)y ∈ C. 

Geometrik ma’no: ikkita nuqtani birlashtiruvchi kesma butunlay to‘plamda joylashgan. 

Yarim fazolar, sharlar, polyhedronlar, konuslar - konveks to‘plamlar misollari. 

Konveks to‘plamlarning kesishmasi konveks, lekin birlashma emas. 

Konveks funksiya f: C → R (C - konveks to‘plam): f(λx + (1-λ)y) ≤ λf(x) + (1-

λ)f(y) barcha x, y ∈ C va λ ∈ [0,1] uchun. Geometrik ma’no: funksiya grafi har qanday 

ikkita nuqta orasidagi vatardan pastda. Agar tengsizlik qat’iy bo‘lsa (x ≠ y va 0 < λ < 

1 uchun), funksiya qat’iy konveks. 

Differensiallanuvchi konveks funksiya uchun: f konveks ⟺ f(y) ≥ f(x) + ⟨∇f(x), 

y - x⟩ barcha x, y uchun (birinchi tartib sharti). Ikki marta differensiallanuvchi funksiya 

uchun: f konveks ⟺ Hessian matritsasi musbat yarimo‘q (D²f(x) ⪰ 0). Bu shartlar 

konvekslikni tekshirish uchun qulay. 

Subdifferensial konveks, lekin differensiallanuvchi bo‘lmasligi mumkin bo‘lgan 

funksiyalar uchun umumlashtirilgan hosila. Subgradient g ∈ X*: f(y) ≥ f(x) + ⟨g, y - x⟩ 

barcha y uchun. Subdifferensial ∂f(x) - barcha subgradientlar to‘plami. Bu to‘plam 

konveks va yopiq (bo‘sh bo‘lishi mumkin). Agar f x da differensiallanuvchi bo‘lsa, 

∂f(x) = {∇f(x)} (yagona element). 

Konveks tahlil qoidalari: ∂(f + g)(x) ⊇ ∂f(x) + ∂g(x), ∂(αf)(x) = α∂f(x) (α > 0), 

zanjir qoidasi (maxsus shartlar ostida). Bu qoidalar optimallashda qo‘llaniladi. Optimal 

shart: x* - f ning global minimumi ⟺ 0 ∈ ∂f(x*). Bu differensiallanuvchi holatdagi 

∇f(x*) = 0 shartining umumlashtirilishi. 

Konjugat funksiya f*: X* → R quyidagicha aniqlanadi: f*(y*) = sup_{x∈X} [⟨y*, 

x⟩ - f(x)]. Bu Legendre transformatsiyasining umumlashtirilishi. f* har doim konveks 
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va yopiq. Fenchel-Moreau teoremasi: agar f konveks, yopiq va proper bo‘lsa, f** = f. 

Konjugat funksiya duallik nazariyasida va optimallashda muhim rol o‘ynaydi. 

Proyeksiya konveks to‘plamga P_C(x) = argmin_{y∈C} ||x - y|| - x ga eng yaqin 

nuqta C da. Agar C yopiq va konveks bo‘lsa, proyeksiya yagona va davomiy. 

Proyeksiya xususiyati: ⟨x - P_C(x), y - P_C(x)⟩ ≤ 0 barcha y ∈ C uchun (tik burchak 

sharti). Proyeksiya ko‘plab algoritmlar (proyeksiyali gradient, ADMM) ning asosiy 

komponentidir. 

Sobolev fazolari va zaif differensiallanish 

Klassik differensiallanish ba’zan juda qat’iy: ko‘plab funksiyalar (masalan, 

piecewise differensiallanuvchi funksiyalar) klassik hosilaga ega emas. Zaif hosila 

tushunchasi umumiyroq va differensial tenglamalar nazariyasida muhim. 

Zaif hosila: funksiya u ∈ L¹_{loc}(Ω) ning zaif hosilasi v ∈ L¹_{loc}(Ω) bo‘lib, 

∫_Ω u ∂φ/∂x_i dx = -∫_Ω v φ dx barcha silliq, kompakt nosimlikli test funksiyalar φ 

uchun. Bu integratsiya bo‘yicha qismlarga ajratish formulasidan kelib chiqadi. Agar u 

klassik differensiallanuvchi bo‘lsa, zaif hosila klassik hosilaga teng. 

Sobolev fazosi W^{k,p}(Ω) - barcha funksiyalar u ∈ L^p(Ω) to‘plami bo‘lib, k-

tartibli barcha zaif hosilalari L^p(Ω) ga tegishli. Norma: ||u||{W^{k,p}} = (Σ{|α|≤k} 

||D^α u||_p^p)^{1/p}, bu yerda α - multi-indeks, D^α - zaif hosila. W^{k,p}(Ω) Banax 

fazosi. W^{k,2}(Ω) = H^k(Ω) Hilbert fazosi (Sobolev-Hilbert fazosi). 

Sobolev kiritish teoremasi: ma’lum shartlar ostida W^{k,p}(Ω) ⊂ L^q(Ω) yoki 

W^{k,p}(Ω) ⊂ C^m(Ω̄) (davomiy funksiyalar fazosi). Masalan, W^{1,p}(Ω) ⊂ 

L^{p*}(Ω), bu yerda p* = np/(n-p) (p < n uchun) - Sobolev ko‘rsatkichi. Agar kp > n 

bo‘lsa, W^{k,p}(Ω) ⊂ C(Ω̄) - funksiyalar davomiy. Bu natijalar PDE yechimlarining 

silliqligini o‘rganishda muhim. 

Rellich-Kondrachov kompaktlik teoremasi: ma’lum shartlar ostida W^{k,p}(Ω) 

dan L^q(Ω) ga kirish kompakt (q < p* uchun). Bu demak, chegaralangan ketma-ketlik 

W^{k,p} da yaqinlashuvchi qism ketma-ketlikka ega L^q da. Kompaktlik ko‘plab 

mavjudlik teoremalarida muhim (masalan, variatsion masalalarda). 

Poincaré tengsizligi: Ω - chegaralangan soha uchun ||u||{L^p} ≤ C||∇u||{L^p} (u 

ning o‘rtachasi nolga teng deb faraz qilganda). Bu tengsizlik funksiya va uning hosilasi 

o‘rtasida bog‘liqlik o‘rnatadi. Friedrichs tengsizligi: ||u||{W^{1,p}} ≤ C||∇u||{L^p} (u 

chegarada nolga teng bo‘lsa). Bu tengsizliklar energiya baholarida qo‘llaniladi. 

Sobolev fazolari PDE nazariyasining asosi hisoblanadi. Zaif yechimlar Sobolev 

fazolarida qidiriladi. Ko‘plab klassik muammolar (Dirichlet, Neumann masalalari) 

Sobolev fazolarida yaxshi qo‘yilgan. Variatsion formulatsiyalar (Galerkin usuli, chekli 

elementlar usuli) Sobolev fazolarida ishlaydi. Zamonaviy PDE nazariyasi Sobolev 

fazolarisiz tasavvur qilinmaydi. 

Xulosa 
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Ko‘p o‘lchovli ma’lumot massivlarida belgilangan funksiyalarning algebraik va 

analitik xususiyatlarini tadqiq qilish natijasida quyidagi fundamental xulosalarga 

kelamiz. 

Algebraik strukturalar massiv operatsiyalarining asosiy qonuniyatlarini belgilaydi. 

Guruh strukturasi qo‘shish operatsiyasining xususiyatlarini, halqa strukturasi ikkala 

operatsiyaning o‘zaro ta’sirini, maydon strukturasi esa to‘liq algebraik tizimni 

tavsiflaydi. Vektorli fazolar chiziqli algebra uchun tabiiy muhitni yaratadi. Modullar 

nazariyasi vektorli fazolarni umumlashtiradi va halqalar ustida chiziqli algebrani 

rivojlantiradi. 

Tensorli algebra yuqori o‘lchovli massivlar uchun zarur matematik apparatni 

taqdim etadi. Tensorli ko‘paytma, tashqi algebra, simmetrik algebra turli algebraik 

tuzilmalarni beradi. Ko‘p chiziqli xaritalashlar tensorlar bilan ishlashning tabiiy tili 

hisoblanadi. Dual fazolar va adjoynt operatorlar algebraik strukturalarning chuqur 

xususiyatlarini ochib beradi. 

Operator algebralari chiziqli operatorlarning murakkab tuzilmasini o‘rganadi. 

Banax va C*-algebralar funksional tahlilning muhim ob’ektlaridir. Spektral nazariya 

operatorlarning invariantlarini tavsiflaydi. Spektral teorema o‘z-o‘ziga adjoynt 

operatorlarni diagonal shaklga keltirish imkonini beradi. Singular qiymatlar har qanday 

operator uchun optimal yoyilmani ta’minlaydi. 

Topologik xususiyatlar yaqinlik va uzluksizlik tushunchalarini umumlashtiradi. 

Metrik va normali fazolar konkret yaqinlik o‘lchovlarini beradi. Kompaktlik ko‘plab 

muhim teoremalar uchun zarur shart. Davomiy funksiyalar topologik strukturani 

saqlaydi. To‘liqlik Koshi ketma-ketliklarining yaqinlashishini kafolatlaydi. 

Banax va Hilbert fazolari funksional tahlilning asosiy ob’ektlaridir. Hahn-Banax, 

yopiq graf, ochiq akslantirish teoremalari Banax fazolarining fundamental natijalari. 

Proyeksiya teoremasi va Riesz tasviri Hilbert fazolarining maxsus xususiyatlarini 

ko‘rsatadi. Bu fazolar cheksiz o‘lchovli chiziqli algebraning tabiiy muhiti. 

Frechet differensiallash cheksiz o‘lchovli fazolarda differensial hisobni 

rivojlantiradi. Zanjir qoidasi murakkab kompozitsiyalarning hosilalarini hisoblash 

imkonini beradi. Implitsit funksiya va teskari operator teoremalari mahalliy strukturani 

tushunishga yordam beradi. Yuqori tartibli hosilalar va Teylor qatorlari mahalliy 

approksimatsiyani ta’minlaydi. 

Konveks tahlil optimallash nazariyasining asosini tashkil etadi. Subdifferensial 

differensiallanmaydigan konveks funksiyalar uchun umumlashtirilgan hosila beradi. 

Konjugat funksiya duallik nazariyasida markaziy rol o‘ynaydi. Proyeksiya operatori 

ko‘plab algoritmlarning asosiy komponenti. Konveks optimallash samarali 

yechiladigan masalalar sinfini belgilaydi. 

Sobolev fazolari zaif differensiallanish tushunchasini joriy qiladi va differensial 

tenglamalar nazariyasining tabiiy muhitini yaratadi. Kiritish va kompaktlik teoremalari 
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yechimlarning silliqligini o‘rganish imkonini beradi. Poincaré va Friedrichs 

tengsizliklari energiya baholarida muhim. Zaif yechimlar tushunchasi klassik 

yechimlar mavjud bo‘lmagan holatlarda qo‘llaniladi. 

Umumiy xulosa: ko‘p o‘lchovli ma’lumot massivlarida belgilangan 

funksiyalarning algebraik va analitik xususiyatlari chuqur va boy nazariy strukturaga 

ega. Algebraik yondashuv operatsiyalarning qonuniyatlarini, analitik yondashuv esa 

uzluksizlik va differensiallanish xossalarini o‘rganadi. Bu ikki yondashuv birgalikda 

zamonaviy ma’lumotlar fani, mashinali o‘rganish va ilmiy hisoblashlar uchun 

mustahkam matematik asos yaratadi. 
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