"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Ko‘p o‘lchovli massivlar va ularning funksiyalarini tadqiq
qilish, ularning o‘ziga xosligini hisobga olish

Gulbodom Oybek qizi Norqulova
BXU

Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlar va ularning
funksiyalarini kompleks tadqiq qilish amalga oshirilgan. Massivlarning matematik
modellari, tuzilishi, xotira tashkil etilishi va asosiy operatsiyalar to‘liq tahlil qgilingan.
Tadqiqotda bir, ikki va yuqgori o‘lchovli massivlar, ularning xususiyatlari, qo‘llanish
sohalari va amaliy dasturlashdagi ahamiyati o‘rganilgan. Maqolada massiv
funksiyalarining klassifikatsiyasi, yaratish va initsializatsiya, kirish va o‘zgartirish,
matematik operatsiyalar, qidiruv va saralash algoritmlari batafsil ko‘rib chiqilgan.
Massivlar bilan ishlashning algoritmik murakkabligi, xotira samaradorligi va
optimallash strategiyalari tahlil qilingan. Tadqiqot natijalari turli dasturlash tillarida
(Python, Java, C++) massivlarni qo‘llash wusullari va zamonaviy hisoblash
texnologiyalarida ularning roli haqida keng ma’lumot beradi. Didaktik yondashuv
asosida massivlarni o‘qitish metodikasi ishlab chiqilgan.

Kalit so‘zlar: ko‘p of‘lchovli massivlar, massiv funksiyalari, ma’lumotlar
strukturasi, algoritmik murakkablik, xotira tashkil etilishi, indekslash tizimlari,
matritsali operatsiyalar, massiv algoritmlari, dasturlash, ma’lumotlar gayta ishlash,
tensorlar, massiv optimallashuvi, hisoblash samaradorligi

Study of Multidimensional Arrays and Their Functions
Considering Their Specific Features

Gulbodom Oybek qizi Norqulova
BXU

Abstract: This article presents a comprehensive study of multidimensional arrays
and their functions, taking into account their specific characteristics. The mathematical
models of arrays, their structure, memory organization, and fundamental operations are
thoroughly analyzed. The research examines one-dimensional, two-dimensional, and
higher-dimensional arrays, their properties, areas of application, and importance in
applied programming. The paper provides an in-depth discussion of array function
classification, creation and initialization, access and modification, mathematical
operations, search and sorting algorithms. The algorithmic complexity of array
processing, memory efficiency, and optimization strategies are analyzed. The research

ISSN 2181-0842 | IMPACT FACTOR 4.525 85 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

findings offer extensive information on the use of arrays in various programming
languages (Python, Java, C++) and their role in modern computational technologies. A
didactic approach is employed to develop a methodology for teaching arrays.

Keywords: multidimensional arrays, array functions, data structures, algorithmic
complexity, memory organization, indexing systems, matrix operations, array
algorithms, programming, data processing, tensors, array optimization, computational
efficiency

Kirish

Ko‘p o‘lchovli massivlar zamonaviy dasturlash va hisoblash texnologiyalarining
asosiy ma’lumotlar strukturasi hisoblanadi. Ular katta hajmdagi tartibli ma’lumotlarni
saglash, tashkil etish va samarali qayta ishlash imkonini beradi. Massivlar tushunchasi
dasturlashning dastlabki kunlaridan boshlab mavjud bo‘lsa-da, zamonaviy ilovalarda
ularning ahamiyati tobora ortib bormoqda.

Massiv - bu bir xil turdagi elementlarning tartiblangan to‘plami bo‘lib, har bir
elementga indeks orgali murojaat qilish mumkin. Bir o‘lchovli massiv chiziqli ketma-
ketlik, ikki o‘lchovli massiv jadval yoki matritsa, uch va undan yuqori o‘lchovli
massivlar esa tensorlar sifatida garalishi mumkin. Massivlarning asosiy afzalligi -
elementlarga tezkor murojaat, ya'ni O(1) vaqt murakkabligi bilan istalgan elementni
olish imkoniyati.

Hozirgi kunda ko‘p o‘lchovli massivlar turli sohalarda keng qo‘llaniladi. Ilmiy
hisoblashlarda chiziqli algebra operatsiyalari, matritsali hisoblashlar va ragamli tahlil
massivlarsiz tasavvur qilinmaydi. Tasvirlarni gayta ishlashda har bir piksel massiv
elementi sifatida saglanadi va rangli tasvirlar uch o‘lchovli massivlar (tinglik x kenglik
x rang kanallari) bilan ifodalanadi. Sun’iy intellekt va chuqur o‘rganishda neyron
tarmogqlar og‘irliklari va faollashtirish qiymatlari tensorlar (ko‘p o‘lchovli massivlar)
sifatida saqlanadi.

Ma’lumotlar tahlilida katta hajmdagi jadval ko‘rinishidagi ma’lumotlar ikki
o‘Ichovli massivlarda saglanadi va turli statistik operatsiyalar qo‘llaniladi. Video qayta
ishlashda har bir kadr ikki o‘lchovli massiv bo‘lib, butun video to‘rt o‘Ichovli struktura
(vaqt x tinglik x kenglik x rang) sifatida qaralishi mumkin. O‘yinlar dasturlashda o‘yin
maydoni, xaritalar va ob’ektlar holatlari massivlar orqali ifodalanadi.

Massiv funksiyalari - bu massivlar ustida bajariladigan operatsiyalar majmuasi
bo‘lib, ular yaratish, o‘zgartirish, qidiruv, saralash, matematik hisoblashlar va boshqa
vazifalarni oz ichiga oladi. Har bir dasturlash tili o‘z standart kutubxonasida massiv
funksiyalarini taqdim etadi, lekin ularning tuzilishi, ishlash mexanizmi va
samaradorligi turlicha bo‘lishi mumkin.

Tadqiqotning maqgsadi ko‘p o‘lchovli massivlar va ularning funksiyalarini to‘liq
tadqiq qilish, nazariy asoslarini yaratish, amaliy qo‘llanishlarni ko‘rsatish va samarali

ISSN 2181-0842 | IMPACT FACTOR 4.525 86 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

dasturlash yo‘l-yo‘riglarini ishlab chiqgishdan iborat. Tadqiqot ob’ekti sifatida turli
o‘lchovdagi massivlar, ularning xususiyatlari, operatsiyalari va turli dasturlash tillarida
amalga oshirilishi tanlab olingan. Tadqiqot metodologiyasi nazariy tahlil, algoritmik
baholash, eksperimental o‘lchash va qiyosiy tahlilni 0‘z ichiga oladi.

Asosiy qism

Massivlarning nazariy asoslari va matematik modeli

Massiv formal ravishda xaritalash sifatida aniglanishi mumkin: A: I — T, bu
yerda I - indekslar to‘plami, T - elementlar turi. Bir o‘Ichovli massiv uchun I = {0, 1,
2,..,n-1} yokiI= {1, 2, ..., n}. Ikki o‘Ichovli massiv uchun I = {0, ..., m-1} x {0, ...,
n-1}. Umumiy n-o‘lchovli massivuchun I =1 x I» x ... x I, (Dekart ko‘paytma).

Matematik jihatdan, bir o‘lchovli massiv vektor, ikki o‘lchovli massiv matritsa,
yuqori o‘lchovli massiv esa tensor sifatida qaraladi. Vektor v € R n ta haqiqiy
sonlardan iborat bo‘lib, v = (v1, vz, ..., vn) ko‘rinishda yoziladi. Matritsa A € R*(mxn)
m qator va n ustundan tashkil topgan: A = [ajj], buyerdai=1,...mvaj=1,...n.

Tensor T ko‘p indeksli ob’ekt bo‘lib, umumiy ko‘rinishda T = [tiiz...in]
ko‘rinishida yoziladi. Masalan, uch o‘lchovli tensor T € R*(IxmXn) uchta indeksga
ega: T = [tix], buyerdai=1,...1,j=1,....m, k= 1,...,n. Tensorlar fizikada (stress-strain
tensorlari), sun’iy intellektda (chuqur o‘rganish) va signallar gayta ishlashda keng
qo‘llaniladi.

Massivning asosiy xususiyatlari quyidagilardan iborat. O°‘Ichovlilik
(dimensionality) - massivning nechta indeks bilan aniqlanishi. Shakl (shape) - har bir
o‘lcham bo‘yicha elementlar soni, masalan, (3, 4, 5) shaklda uch o‘lchovli massiv.
Hajm (size) - umumiy elementlar soni, shakl komponentlarining ko‘paytmasi: 3 x 4 X
5 =60. Ma’lumot turi (dtype) - har bir elementning turi (int, float, char va boshqalar).

Massiv indekslash tizimlari dasturlash tillariga bog‘liq. 0-asosli indekslash (C,
Java, Python) 0 dan boshlanadi: A[0], A[1], ..., A[n-1]. 1-asosli indekslash (MATLAB,
Fortran, Lua) 1 dan boshlanadi: A(1), A(2), ..., A(n). Ko‘p o‘Ichovli massivlarda gator-
ustun tartibi (row-major vs column-major) muhim: C/C++/Python da qator-ustun,
MATLAB/Fortran da ustun-qator.

Xotira tashkil etilishi va saqlash usullari

Massivlar xotirada uzluksiz blok sifatida saglanadi, bu tezkor murojaat imkonini
beradi. Bir o‘lchovli massiv A[n] uchun xotira tuzilmasi oddiy: ketma-ket joylashgan
n ta element. Har bir elementning manzili: address(A[i]) = base address + 1 X
element size, bu yerda base address - massivning boshlang‘ich manzili, element size
- bitta elementning xotira hajmi (baytlarda).

Ikki o‘Ichovli massiv A[m][n] uchun ikki asosiy saqlash usuli mavjud. Qator-
ustun tartibi (row-major order, C tili) gqatorlar ketma-ket saqlanadi: A[0][0], A[O][1], ...,
A[0][n-1], A[1][0], A[1][1], ... Element manzili: address(A[i][j]) = base address + (i x

ISSN 2181-0842 | IMPACT FACTOR 4.525 87 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

n + j) X element size. Bu tartib qatorlar bo‘yicha iteratsiya qilishda kesh
samaradorligini oshiradi.

Ustun-qator tartibi (column-major order, Fortran/MATLAB) ustunlar ketma-ket
saglanadi: A[0][0], A[1][0], ..., A[m-1][0], A[O][1], A[1][1], ... Element manzili:
address(A[1][j]) = base address + (j X m + 1) X element size. Bu tartib ustunlar
bo‘yicha iteratsiya qilishda samaraliroq. Saqlash tartibini bilish algoritmlarni
optimallashtirish uchun juda muhim.

Yuqori o‘lchovli massivlar uchun umumiy formula: n-o‘lchovli massiv
A[di][d2]...[dn] ning elementi A[ii][iz]...[1n] manzili gator-ustun tartibida: address =
base address + ((...((11 X d2 + 12) X ds + 13)...) X dn + 1a) X element size. Bu rekursiv
formula har bir o‘lcham bo‘yicha offset hisoblaydi.

Stride tushunchasi xotira tashkil etilishida muhim. Stride - har bir o‘lcham
bo‘yicha keyingi elementga o‘tish uchun zarur baytlar soni. Bir o‘lchovli massivda
stride = element_size. Ikki o‘Ichovli massivda gator stride’i = n x element_size, ustun
stride’1 = element size (row-major tartibda). Stride’lar massiv shaklini o‘zgartirish
(reshape) operatsiyasida o‘zgaradi.

Xotira joylashuvining ahamiyati kesh xotiradan samarali foydalanishda namoyon
bo‘ladi. Zamonaviy protsessorlar ma’lumotlarni kichik bloklarda (kesh chiziqglari,
odatda 64 bayt) yuklaydi. Agar massiv elementlariga xotirada joylashgan tartibda
murojaat qilsak, kesh hit rate yuqori bo‘ladi. Aksincha, tasodifiy murojaat yoki
noto‘g‘ri tartibda murojaat kesh miss’larni oshiradi va sekinlashtiradi.

Asosiy massiv funksiyalari va ularning tasnifi

Massiv funksiyalari maqsadiga ko‘ra bir nechta asosiy toifalarga bo‘linadi.
Yaratish va initsializatsiya funksiyalari yangi massiv ob’ektlarini hosil qiladi va
boshlang‘ich qgiymatlar bilan to‘ldiradi. Kirish va o‘zgartirish funksiyalari
elementlarga murojaat va ularni yangilash imkonini beradi. Matematik operatsiyalar
funksiyalari arifmetik va algebraik amallarni bajaradi.

Qidiruv funksiyalari ma’lum elementni yoki shartga mos elementlarni topadi.
Saralash funksiyalari elementlarni tartibda joylashtiradi. Transformatsiya funksiyalari
massiv shaklini o‘zgartiradi. Agregatsiya funksiyalari statistik hisoblashlarni amalga
oshiradi (yig‘indi, o‘rtacha, maksimum). Filtratsiya funksiyalari shartga mos
elementlarni tanlaydi. Birlashtirish funksiyalari bir nechta massivlarni birlashtiriladi.

Python NumPy kutubxonasida massiv yaratish funksiyalari: numpy.array() -
listdan massiv yaratish, numpy.zeros(shape) - nollar bilan, numpy.ones(shape) - birlar
bilan, numpy.empty(shape) - initsializatsiyasiz, numpy.full(shape, value) - berilgan
qiymat bilan, numpy.arange(start, stop, step) - ketma-ketlik, numpy.linspace(start, stop,
num) - chizigli ~ bo‘lingan, numpy.eye(n) - birlik matritsasi,
numpy.random.random(shape) - tasodifiy sonlar.

ISSN 2181-0842 | IMPACT FACTOR 4.525 88 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Java tilida massiv yaratish: int[] array = new int[n] - bir o‘lchovli, int[][] matrix =
new int[m][n] - ikki o‘lchovli, int[] array = {1, 2, 3} - boshlang‘ich qiymatlar bilan.
Arrays sinfi qo‘shimcha funksiyalarni taqdim etadi: Arrays.fill(array, value),
Arrays.copyOf{array, length), Arrays.sort(array), Arrays.binarySearch(array, key).

C++ da massiv yaratish: int array[n] - statik, int* array = new int[n] - dinamik,
std::vector<int> vec(n) - vektor konteyner, std::array<int, n> arr - std::array. Vektorlar
o‘lchamni dinamik o‘zgartirish imkonini beradi: vec.push back(value),
vec.pop_back(), vec.resize(new_size). STL algoritmlari (std::sort, std::find, std::copy)
massivlar va konteynerlar uchun umumiy.

Indekslash va slicing operatsiyalari

Indekslash massiv elementlariga murojaat qilishning asosiy usuli. Oddiy
indekslash: array[i] bir o‘lchovli massivda, matrix[i][j] ikki o‘lchovli massivda.
Mantiy indekslash (Python) oxiridan hisoblash: array[-1] oxirgi element, array[-2]
oxiridan ikkinchi. Ko‘p o‘Ichovli indekslash: array[i, j] yoki array[i][j] sintaksisi.

Slicing (kesish) massivning bir qismini ajratib olish. Oddiy slicing:
array[start:stop] start dan stop gacha (stop kiritmay). Qadamli slicing:
array[start:stop:step] har step-elementni olish. To‘liq o‘lcham: array[:] barcha
elementlar. Boshidan kesish: array[:n] birinchi n ta element. Oxiridan kesish: array[n:]
n-elementdan oxirigacha. Teskari tartiblash: array[::-1].

Ko‘p olchovli slicing: matrix[start:stop, :] qatorlarni kesish, matrix[:, start:stop]
ustunlarni kesish, matrix[::2, ::2] har ikkinchi gator va ustun. Numpy da advanced
indexing imkoniyatlari keng: boolean indexing (array[array > 0] musbat elementlar),
fancy indexing (array[[0, 2, 4]] tanlangan indekslar), masking (array[mask] boolean
mask bo‘yicha).

Slicing operatsiyasining ichki mexanizmi: NumPy da slicing ko‘pincha view
(ko‘rinish) qaytaradi - yangi xotira ajratilmaydi, faqat stride va offset o‘zgaradi. Bu
xotirani tejaydi va tezroq ishlaydi. Lekin o‘zgartirish asl massivga ta’sir qiladi. Copy
(nusxa) yaratish uchun .copy() metodidan foydalanish kerak. Java va C++ da slicing
tabily qo‘llab-quvvatlanmaydi, lekin kutubxonalar orqali amalga oshirilishi mumkin.

Ellipsis (...) ko‘p o‘lchovli massivlarda barcha o‘lchamlarni gamrab olish uchun:
arrayl[..., 0] oxirgi o‘lchamning birinchi elementi, array[0, ...] birinchi o‘lchamning
birinchi elementi. Newaxis (None) yangi o‘lcham qo‘shish uchun: array[np.newaxis, :]
(1, n) shaklga o‘zgartiradi. Bu broadcasting uchun foydali.

Matematik operatsiyalar va chiziqli algebra

Elementma-element operatsiyalar (element-wise) har bir elementga alohida
qo‘llaniladi. Arifmetik: A + B, A - B, A * B (element-wise ko‘paytirish), A / B, A **
n (darajaga ko‘tarish). Taqqoslash: A > B, A == B, A != B (boolean massiv qaytaradi).
Mantiqiy: A & B (and), A | B (or), ~A (not).

ISSN 2181-0842 | IMPACT FACTOR 4.525 89 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Broadcasting mexanizmi turli shaklgagi massivlarni operatsiyalarda ishlatish
imkonini beradi. Qoidalar: (1) O‘lchamlar soni tenglanadi (kichikroq massivga 1
o‘lchamlari qo‘shiladi). (2) Har bir o‘lcham bo‘yicha o‘lchamlar teng bo‘lishi yoki biri
1 bo‘lishi kerak. (3) Natija shakli - har bir o‘lcham bo‘yicha maksimum. Masalan, (3,
l)va(l,4)— (3, 4).

Chizigli algebra operatsiyalari: Matritsalarni ko‘paytirish: C = A @ B yoki
np.matmul(A, B), bu yerda A(mxn), B(nxp) — C(mxp). Transpozitsiya: A.T yoki
np.transpose(A). Determinant: np.linalg.det(A). Teskari matritsa: np.linalg.inv(A).
Xos qiyatlar: np.linalg.eig(A). Singular qiymatlar: np.linalg.svd(A).

Vektor operatsiyalari: Nuqtali ko‘paytma (dot product): np.dot(a, b) yoki a @ b.
Ichki ko‘paytma: np.inner(a, b). Tashqi ko‘paytma (outer product): np.outer(a, b) -
matritsa hosil qiladi. Xoch ko‘paytma (cross product): np.cross(a, b) (fagat 3D
vektorlar uchun). Norma: np.linalg.norm(a) Evklid normasi.

Matritsali yoyilmalar: LU yoyilmasi: A = LU (scipy.linalg.lu). QR yoyilmasi: A
= QR (np.linalg.qr). Cholesky yoyilmasi: A = LL*T musbat aniq matritsalar uchun
(np.linalg.cholesky). SVD: A = UXVAT (np.linalg.svd). Bu yoyilmalar chizigli
tizimlarni yechish, eng kichik kvadratlar masalasi va boshqa qo‘llanmalarda ishlatiladi.

Tensorli operatsiyalar: Tensorni qisqartirish (contraction): np.tensordot(A, B,
axes). Einstein yozuvi (np.einsum) murakkab tensorli operatsiyalarni qisqa ifoda qilish
uchun. Masalan, np.einsum(‘ij,jk->1k’, A, B) matritsalarni ko‘paytirish. Tensorli
ko‘paytma: np.kron(A, B) Kroneker ko‘paytmasi.

Qidiruv va saralash algoritmlari

Chizigli qidiruv (linear search) eng oddiy usul: ketma-ket barcha elementlarni
tekshirish. Vaqt murakkabligi O(n). Python da: element in array, array.index(element).
NumPy da: np.where(array == value) barcha indekslarni qaytaradi. Afzalligi: massiv
tartiblangan bo‘lishi shart emas. Kamchiligi: katta massivlarda sekin.

Ikkilik qidiruv (binary search) tartiblangan massivlarda ishlaydi: o‘rtadagi
element bilan taqqoslash va qidirish oralig‘ini ikki baravarga kamaytirish. Vaqt
murakkabligi O(log n). Python da: bisect modulidan bisect left, bisect right. NumPy
da: np.searchsorted(array, value). Shartlar: massiv tartiblangan bo‘lishi kerak.

Saralash algoritmlari turli murakkablik va xususiyatlarga ega. Bubble sort: O(n?),
oddiy lekin sekin. Insertion sort: O(n?) eng yomon holat, O(n) yaxshi tartiblangan
uchun. Selection sort: O(n?), minimal almashtirishlar. Merge sort: O(n log n), barqaror,
qo‘shimcha xotira talab qgiladi. Quick sort: O(n log n) o‘rtacha, O(n*) eng yomon,
joyida, bargaror emas. Heap sort: O(n log n), joyida, bargaror emas.

Python da: sorted(array) yangi tartiblangan list qaytaradi, array.sort() joyida
saralaydi. NumPy da: np.sort(array) yangi massiv, array.sort() joyida. Tartib:
ascending (default) yoki descending ([::-1] yoki sort order parametr). Maxsus kalit
funksiya: sorted(array, key=lambda x: custom_key(x)).

ISSN 2181-0842 | IMPACT FACTOR 4.525 90 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Ko‘p oflchovli massivlarni saralash: axis parametri bo‘yicha. np.sort(matrix,
axis=0) ustunlarni saralaydi, np.sort(matrix, axis=1) qatorlarni saralaydi.
Leksikografik saralash: np.lexsort((array2, arrayl)) birinchi arrayl, keyin array2
bo‘yicha. Structured array’lar bir nechta maydon bo‘yicha saralash imkonini beradi.

Partial sort (qisman saralash): faqat k ta eng kichik/katta elementni topish to‘liq
saralashdan tezroq. np.partition(array, k) k-indeksga nisbatan partitsiya qiladi:
kichiklar chapda, kattalar o‘ngda, lekin har bir qism ichida tartib yo‘q. np.argpartition()
indekslarni qaytaradi. Vaqt murakkabligi O(n), to‘liq saralashdan (O(n log n)) tezroq.

Agregatsiya va statistik funksiyalar

Yig‘indi va o‘rtacha: np.sum(array) barcha elementlar yig‘indisi, np.mean(array)
o‘rtacha qiymat, np.average(array, weights) og‘irlikli o‘rtacha. Axis parametri:
np.sum(matrix, axis=0) har bir ustun yig‘indisi, np.sum(matrix, axis=1) har bir qator
yig‘indisi. keepdims=True o‘lchamlarni saqlaydi.

Ekstremal qiymatlar: np.min(array), np.max(array) minimal va maksimal
elementlar. np.argmin(array), np.argmax(array) minimal/maksimal elementlarning
indekslari. np.nanmin(array), np.nanmax(array) NaN qgiymatlarni e’tiborsiz qoldiradi.
np.ptp(array) (peak-to-peak) diapazon: max - min.

Dispersiya va standart og‘ish: np.var(array) dispersiya, np.std(array) standart
og‘ish. ddof parametri (delta degrees of freedom): ddof=0 populatsiya dispersiya
(default), ddof=1 tanlanma dispersiya. Formula: var = X(x - mean)* / n, std = \var.
Dispersiya ma’lumotlarning tarqalishini o‘lchaydi.

Mediana va kvantillar: np.median(array) mediana (50-percentil).
np.percentile(array, q) g-percentil. np.quantile(array, q) kvantil (0 < q < 1). Mediana
chetki qiymatlarga o‘rtachadan kam ta’sirlanadi. Interquartile range (IQR) = Q3 - Q1
markaziy 50% diapazon.

Korrelyatsiya va kovariatsiya: np.corrcoef(x, y) korrelyatsiya koeffitsiyenti (-1
dan 1 gacha, 0 - bog‘liglik yo‘q). np.cov(Xx, y) kovariatsiya matritsasi. np.correlate(x,
y) diskret korrelyatsiya (signal processing). Korrelyatsiya ikki o‘zgaruvchi orasidagi
chiziqli bog‘liglikni o‘lchaydi.

Kumulyativ =~ operatsiyalar: np.cumsum(array) kumulyativ ~ yig‘indi,
np.cumprod(array) kumulyativ ko‘paytma. np.diff(array) qo‘shni elementlar ayirmasi.
Gradient: np.gradient(array) raqamli gradient. Bu funksiyalar vaqt qatorlari va
signallarni tahlil qilishda foydali.

Transformatsiya va shakl o‘zgartirish

Reshape (shakl o‘zgartirish): np.reshape(array, new shape) yoki
array.reshape(new_shape). Umumiy elementlar soni bir xil bo‘lishi kerak: m x n=p x
g. -1 parametri avtomatik hisoblash: array.reshape(-1) bir o‘Ichovli, array.reshape(3, -
1) 3 qator, ustunlar avtomatik. Reshape ko‘pincha view qaytaradi (xotira
ko‘chirilmaydi).

ISSN 2181-0842 | IMPACT FACTOR 4.525 91 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Flatten va ravel: array.flatten() massivni bir o‘lchovli qiladi va copy qaytaradi.
array.ravel() ham bir o‘lchovli qiladi, lekin view qaytaradi (mumkin bo‘lsa). ravel
tezroq, lekin o‘zgartirish asl massivga ta’sir qiladi. Farq: flatten - doimo copy, ravel -
view (agar mumkin bo‘lsa).

Transpose: array. T yoki np.transpose(array) matritsani transpozitsiya qiladi (qator
<> ustun). Ko‘p o‘lchovli uchun axes parametri: np.transpose(array, (2, 0, 1))
o‘lchamlar tartibini o‘zgartiradi. Transpozitsiya view qaytaradi, xotira ko‘chirilmaydi,
faqat stride’lar o‘zgaradi.

Squeeze va expand dims: np.squeeze(array) 1 o‘lchamdagi o‘lchamlarni olib
tashlaydi, (1, 3, 1, 5) — (3, 5). np.expand dims(array, axis) yangi 1 o‘lchamli o‘lcham
qo‘shadi. array[:, np.newaxis] ham shu maqsadda ishlatiladi. Bu broadcasting uchun
kerakli shaklni yaratishda foydali.

Concatenate va stack: np.concatenate([arrayl, array2], axis) massivlarni
birlashtiradi mavjud o‘lcham bo‘yicha. np.vstack([arrayl, array2]) vertikal (qatorlar
bo‘yicha), np.hstack([array1, array2]) gorizontal (ustunlar bo‘yicha). np.stack([array],
array2], axis) yangi o‘lcham yaratib birlashtiradi. np.column_stack(), np.row_stack()
qulaylik funksiyalari.

Split: np.split(array, indices or sections, axis) massivni bo‘laklarga ajratadi.
np.array_split() teng bo‘lmagan bo‘laklar uchun. np.vsplit(), np.hsplit() vertikal va
gorizontal bo‘lish uchun maxsus. Split concatenate ga teskari operatsiya.

Xotira samaradorligi va optimallash

View vs copy farqi juda muhim. View - asl massiv bilan xotirani bo‘lishadi, copy
- mustaqil massiv yaratadi. View operatsiyalari: slicing (array[1:5]), transpose
(array.T), reshape (ba’zi hollarda). Copy operatsiyalari: fancy indexing (array[[1,3,5]]),
fancy slicing ba’zi hollarda. .copy() metodi aniq copy yaratadi.

Kontiguity (uzluksizlik): C-contiguous - qator-ustun tartibda uzluksiz, Fortran-
contiguous - ustun-qator tartibda. np.ascontiguousarray(array) C-contiguous qiladi,
np.asfortranarray(array) Fortran-contiguous. Uzluksiz massivlar ba’zi operatsiyalarda
tezroq. array.flags[‘C_CONTIGUOUS’] tekshirish.

In-place operatsiyalar xotirani tejaydi: array += 1 (yangi massiv yaratmaydi),
array *= 2. out parametri: np.add(a, b, out=result) natijani mavjud massivga yozadi.
Ufunc metodlari: np.add.accumulate(), np.add.reduce(), np.add.at() maxsus
operatsiyalar uchun.

Xotira bo‘shatish: del array Python da referencelarni olib tashlaydi, lekin xotirani
darhol bo‘shatmaydi (garbage collector hal qiladi). NumPy da katta massivlardan
foydalangandan keyin del qilish yaxshi amaliyot. Memmap (memory-mapped) fayllar
juda katta massivlar uchun: np.memmap() disk bilan integratsiya.

Dtype optimalasi: to‘g‘ri ma’lumot turini tanlash xotirani tejaydi. float64 o‘rniga
float32 (agar aniqlik yetarli bo‘lsa) xotirani ikki baravarga kamaytiradi. int8 (-128 to

ISSN 2181-0842 | IMPACT FACTOR 4.525 92 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

127) kichik butun sonlar uchun, uint8§ (0 to 255) musbat sonlar uchun.
array.astype(new_dtype) tur o‘zgartirish, lekin copy yaratadi.

Vektorizatsiya Python loop’larini NumPy operatsiyalari bilan almashtirish orqali
tezlashtiradi. Yomon: for i in range(n): result[i] = array[i] * 2. Yaxshi: result = array *
2. Vektorizatsiya C darajasida bajariladigan optimallashtirilgan koddan foydalanadi va
10-100x tezroq bo‘lishi mumkin.

Broadcasting to‘g‘ri qo‘llash ham samaradorlikni oshiradi: explicit loop o‘rniga
broadcasting ishlatish. Misol: matrix + vector (vector matritsa qatorlar soniga
broadcasting qilinadi). Lekin ehtiyot bo‘lish kerak: haddan tashqari broadcasting
xotirani ortiqcha ishlatishi mumkin.

Turli dasturlash tillarida massivlar

Python (NumPy): Eng mashhur ilmiy hisoblashlar kutubxonasi. array obyekti
ndarray sinfidan. Afzalliklari: qulay sintaksis, boy funksiyalar to‘plami, C/Fortran
bilan integratsiya (tezlik). Kamchiliklari: Python interpretatori overhead, GIL parallel
hisoblashni cheklaydi. NumPy massivlari immutable emas - o‘zgartirilishi mumkin.

Python (Pandas): Ma’lumotlar tahlili uchun, DataFrame (ikki o‘lchovli, ustunlar
turli turdagi). Series (bir o‘lchovli, indeksli). NumPy ustiga qurilgan, lekin yuqori
darajadagi abstraktsiya. SQL-ga o‘xshash operatsiyalar: groupby, merge, join. Time
series uchun maxsus qo‘llab-quvvatlash.

Java: Primitive massivlar (int[], double[][]) va object massivlari (String[]). Arrays
utility sinfi: Arrays.sort(), Arrays.binarySearch(), Arrays.fill(), Arrays.equals().
ArrayList - dinamik o‘lcham. Multidimensional: Array of arrays (int[][]) - jagged
arrays (qatorlar turli uzunlikda bo‘lishi mumkin). Apache Commons Math - ilmiy
hisoblashlar uchun.

C++: C-style massivlar (int array[10]), std::array<int, 10> (fixed size),
std::vector<int> (dynamic). STL algoritmlari: std::sort, std::find, std::copy. Eigen
kutubxonasi - chiziqli algebra, matritsali operatsiyalar. Armadillo - MATLAB-ga
o‘xshash sintaksis. Template programming - umumiy kod yozish imkoniyati.

MATLAB: Matritsa-markaziy muhit, har narsa matritsa. Built-in funksiyalar juda
ko‘p: matrix operatsiyalari, visualizatsiya, signallar qayta ishlash. 1-based indexing.
Colon operator: A(:, 1) birinchi ustun, A(1:3, :) birinchi uchta gator. Broadcast
avtomatik. Afzalligi: qulay, kuchli visualizatsiya. Kamchiligi: litsenziya to‘lovi,
umumiy dasturlash uchun cheklangan.

JavaScript (Typed Arrays): Float32Array, Int32Array va boshqalar - binary data
bilan ishlash uchun. Web Workers - parallel hisoblash. Math.js - ilmiy hisoblashlar
kutubxonasi. TensorFlow.js - mashinali o‘rganish browser’da. WebGL - GPU
hisoblashlari.

Parallel va GPU hisoblashlari

ISSN 2181-0842 | IMPACT FACTOR 4.525 93 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

NumPy parallelizatsiya: Ko‘plab NumPy operatsiyalari avtomatik parallel
(BLAS/LAPACK orqali). Threadlar soni: os.environ["OMP _NUM THREADS"] =
"4", Lekin Python GIL multiprocessing talab qilishi mumkin. Joblib, multiprocessing
modullari parallel loop’lar uchun.

GPU hisoblashlari CuPy bilan: NumPy-ga o‘xshash API, lekin GPU da. import
cupy as cp, cp.array(), cp.matmul(). Host (CPU) dan device (GPU) ga ma’lumotlarni
ko‘chirish: cp.asarray(numpy array). Natijani qaytarish: cp.asnumpy(cupy array).
Afzalligi: katta massivlar uchun 10-100x tezroq.

TensorFlow va PyTorch: Chuqur o‘rganish framework’lari, lekin umumiy tensor
operatsiyalari uchun ham. Avtomatik differentsiatsiya, GPU qo‘llab-quvvatlash.
Computational graph - operatsiyalar grafiki, optimallash imkoniyati. Eager execution
vs graph mode: PyTorch eager (Python kabi), TensorFlow ikkalasi ham (TF 2.0 dan
boshlab eager default).

Dask: Parallel NumPy - katta massivlar uchun. dask.array - NumPy API, lekin
lazy evaluation va chunking. Task scheduler - parallel bajarish. Distributed computing
- bir nechta mashinalar. Out-of-core computation - xotiradan kattaroq ma’lumotlar
bilan ishlash. Pandas integration (dask.dataframe).

OpenMP (C/C++): Parallel loop’lar uchun. #pragma omp parallel for - loop
parallel bajariladi. Shared memory parallelism. Threadlar soni:
omp_set num_threads(). Reduction: #pragma omp parallel for reduction(+:sum) - har
bir thread 0z summani hisoblaydi, keyin birlashtiriladi.

MPI (Message Passing Interface): Distributed memory parallelism - bir nechta
mashinalar. mpi4py - Python uchun. Scatter, gather, broadcast - ma’lumotlarni
tagsimlash. Point-to-point va collective communication. Supercomputer’larda keng
qo‘llaniladi.

Amaliy qo‘llanmalar va misollar

Tasvirlarni qayta ishlash: Tasvir = (tinglik x kenglik % 3) massiv, RGB kanallari.
Grayscale konvertatsiya: gray = 0.299R + 0.587G + 0.114*B. Filtratsiya:
konvolyutsiya operatsiyasi, masalan, Gaussian blur. Edge detection: Sobel, Canny
algoritmlari. Transformatsiya: rotate, crop, resize. PIL/Pillow, OpenCV kutubxonalari.

Vagqt qatorlari tahlili: Vaqt qatorlari = bir o‘Ichovli massiv vaqt bo‘yicha. Moving
average: np.convolve(data, weights, mode="*valid’). Trend extraction: linear regression.
Seasonality: Fourier transformatsiya. Autocorrelation: np.correlate(). Pandas - time
series uchun maxsus qo‘llab-quvvatlash: rolling, resampling.

Ma’lumotlar tahlili: Jadval = ikki o‘Ichovli massiv (qatorlar = ob’ektlar, ustunlar
= xususiyatlar). Normalizatsiya: (x - mean) / std. Missing values: np.isnan(),
interpolation. Outliers: IQR usuli, Z-score. Feature engineering: polynomial features,
binning. Sklearn - machine learning, preprocessing.

ISSN 2181-0842 | IMPACT FACTOR 4.525 94 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Chuqur o‘rganish: Neyron tarmoq og‘irliklari = matritsalar. Forward pass: z= Wx
+ b, a = activation(z). Backpropagation: gradientlar hisoblash. Mini-batch: (batch_size
x features) massiv. Convolutional layers: 4D tensorlar (batch x channels x height X
width). PyTorch, TensorFlow framework’lari.

Simulatsiya ~ va Monte-Carlo: Tasodifty = massivlar generatsiya:
np.random.random(), np.random.normal(). = Physics simulation: zarrachalar
pozitsiyalari massivda. Monte Carlo integration: tasodifiy nugqtalar, o‘rtachani
hisoblash. Financial modeling: stock prices simulation. Agent-based models: har bir
agent - massiv elementi.

Xatolar va debugging

Index out of bounds: Eng keng tarqalgan xato - indeks massiv chegarasidan
tashqarida. Python: IndexError. Java: ArraylndexOutOfBoundsException. C++:
undefined behavior (segmentation fault). Yechim: indekslarni tekshirish, assert
statement, boundary checks.

Shape mismatch: Operatsiyalarda massivlar shakli mos kelmasa. Broadcasting
goidalarini buzish. Misol: (3, 4) + (5,) - xato. Yechim: reshape, broadcast to, shaklni
tekshirish. ValueError: operands could not be broadcast together.

Memory errors: Juda katta massiv yaratishga urinish. MemoryError (Python).
Segmentation fault (C++). Yechim: ma’lumot turini optimallashtirish, chunking
(qismlarga bo‘lish), generator funksiyalar, memory-mapped files.

Type errors: Noto‘g‘ri ma’lumot turi. String va int qo‘shish. Implicit conversion
ba’zan kutilmagan natija beradi. Yechim: explicit type conversion, type hints (Python),
strong typing (Java, C++).

NaN va Inf: Not a Number (0/0, V-1) va Infinity (1/0). np.isnan(), np.isinf()
tekshirish. np.nan to num() NaN va Inf ni almayshtirish. Warning‘lar:
RuntimeWarning: invalid value encountered.

Performance issues: Sekin ishlash. Sabablari: Python loop’lari vektorizatsiya
o‘rniga, noto‘g‘ri xotira access pattern (kesh miss’lar), keraksiz nusxa (copy) yaratish.
Yechim: profiling (cProfile, line profiler), vektorizatsiya, in-place operatsiyalar,
to‘g‘ri algoritm tanlash.

Xulosa

Ko‘p o‘lchovli massivlar va ularning funksiyalarini tadqiq qilish natijasida
quyidagi asosiy xulosalarga kelamiz.

Massivlar zamonaviy dasturlashning asosiy ma’lumotlar strukturasi bo‘lib,
tartibli ma’lumotlarni saqlash va tezkor murojaat qilish imkoniyatini beradi.
Matematik jihatdan massivlar vektorlar, matritsalar va tensorlar sifatida qaraladi va
chizigli algebra apparati qo‘llaniladi. O°‘lchovlilik, shakl, hajm va ma’lumot turi
massivning asosiy xarakteristikalaridir.

ISSN 2181-0842 | IMPACT FACTOR 4.525 95 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Xotira tashkil etilishi massiv samaradorligining asosiy omili hisoblanadi. Qator-
ustun va ustun-qator saqlash tartiblari turli tillarda turlicha qo‘llaniladi. Xotirada
uzluksiz joylashish tezkor murojaat va kesh samaradorligini ta’minlaydi. Stride
tushunchasi xotira tuzilmasini to‘liq tavsiflaydi va shakl o‘zgartirish operatsiyalarida
muhim.

Massiv funksiyalari keng spektrni gamrab oladi va turli vazifalarga mo‘ljallangan.
Yaratish va initsializatsiya, kirish va o‘zgartirish, matematik operatsiyalar, qidiruv va
saralash, transformatsiya va agregatsiya - har bir toifa o°‘z algoritmik murakkabligi va
qo‘llanish sohalariga ega.

Indekslash va slicing massivlar bilan ishlashning asosiy usullari bo‘lib,
ma’lumotlarga moslashuvchan murojaat imkonini beradi. NumPy da advanced
indexing (boolean, fancy) kuchli filtrlash va tanlash imkoniyatlarini taqdim etadi. View
va copy mexanizmlari xotira samaradorligini ta’minlaydi.

Matematik operatsiyalar massivlarning asosiy qo‘llanish sohasini tashkil etadi.
Elementma-element operatsiyalar, broadcasting, chiziqli algebra (matritsalarni
ko‘paytirish, transpozitsiya, yoyilmalar) ilmiy hisoblashlar va ma’lumotlar tahlilida
muhim. Vektorizatsiya Python loop’laridan ancha tezroq ishlaydi.

Qidiruv va saralash algoritmlari turli murakkablik va xususiyatlarga ega. Chiziqli
qidiruv oddiy lekin sekin, ikkilik qidiruv tartiblangan massivlarda samarali. Saralash
algoritmlari (merge sort, quick sort) O(n log n) murakkablikka ega. Partial sort faqat k
ta element kerak bo‘lganda samaraliroq.

Agregatsiya va statistik funksiyalar ma’lumotlar tahlilida keng qo‘llaniladi.
Yig‘indi, o‘rtacha, dispersiya, korrelyatsiya kabi ko‘rsatkichlar ma’lumotlarni
xarakteristikalaydi. Axis parametri ko‘p of‘lchovli massivlarda operatsiyalarni
moslashuvchan qo‘llash imkonini beradi.

Transformatsiya operatsiyalari massiv shaklini o‘zgartirish va manipulyatsiya
qilish imkonini beradi. Reshape, transpose, concatenate, split - asosiy
transformatsiyalar. View yaratish xotirani tejaydi, lekin asl massivga ta’sir qilish
xavfini yaratadi.

Xotira samaradorligi va optimallash dastur tezligi uchun muhim. In-place
operatsiyalar, to‘g‘ri dtype tanlash, contiguous massivlar, vektorizatsiya - asosiy
optimallash strategiyalari. Profiling xatoliklar va sekinliklar manbalarini aniqlashga
yordam beradi.

Turli dasturlash tillarida massivlarning o°‘ziga xos xususiyatlari mavjud.
Python/NumPy - ilmiy hisoblashlar uchun qulay, Java - korporativ ilovalar uchun
mustahkam, C++ - maksimal nazorat va tezlik, MATLAB - matritsa operatsiyalari
uchun maxsus. Har bir til 0z ekosistemasiga va qo‘llanish sohalariga ega.

Parallel va GPU hisoblashlari katta massivlar bilan ishlashni sezilarli tezlashtiradi.
NumPy ning avtomatik parallelizatsiyasi, CuPy ning GPU qo‘llab-quvvatlashi,

ISSN 2181-0842 | IMPACT FACTOR 4.525 9% @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

TensorFlow va PyTorch ning kuchli imkoniyatlari zamonaviy hisoblash
texnologiyalarining asosini tashkil etadi.

Amaliy qo‘llanmalar juda keng: tasvirlarni qayta ishlash, vaqt qatorlari tahlili,
ma’lumotlar tahlili, chuqur o‘rganish, simulatsiya - barchasida massivlar markaziy rol
o‘ynaydi. Har bir soha o0‘z maxsus kutubxonalari va usullariga ega.

Tadqiqot ko‘rsatdiki, ko‘p o‘lchovli massivlarni to‘liq tushunish nazariy bilim
(matematik asoslar), algoritmik fikrlash (murakkablik tahlili) va amaliy ko‘nikmalarni
(dasturlash, debugging) birlashtiradi. Bu bilimlar zamonaviy dasturchi uchun zarurdir.

Foydalanilgan adabiyotlar

1. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Introduction to Algorithms,
3rd Edition. MIT Press, 2009. 1312 p.

2. McKinney W. Python for Data Analysis, 2nd Edition. O‘Reilly Media, 2017.
544 p.

3. VanderPlas J. Python Data Science Handbook. O‘Reilly Media, 2016. 541 p.

4. Goodfellow 1., Bengio Y., Courville A. Deep Learning. MIT Press, 2016. 775
p.

5. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical
Recipes, 3rd Edition. Cambridge University Press, 2007. 1235 p.

6. Stroustrup B. The C++ Programming Language, 4th Edition. Addison-Wesley,
2013. 1376 p.

7. Bloch J. Effective Java, 3rd Edition. Addison-Wesley, 2018. 416 p.

8. Harris C.R., Millman K.J., van der Walt S.J. et al. Array programming with
NumPy // Nature. 2020. Vol. 585. P. 357-362.

9. Strang G. Introduction to Linear Algebra, 5th Edition. Wellesley-Cambridge
Press, 2016. 584 p.

10. Golub G.H., Van Loan C.F. Matrix Computations, 4th Edition. Johns Hopkins
University Press, 2013. 756 p.

11. CenxBuk P. ®ynnamenranbubie anroputMbl Ha C++. AHanuz/CTpyKTyphI
nauabix/Coptuposka/llouck. CI16: InaCodtHOII, 2002. 688 c.

12. Knyt JI. MUckyccTBO nporpaMMupoBanusi, ToM 1. OCHOBHBIE aliropuT™Mbl. M.:
Bunesamc, 2006. 720 c.

13. Skiena S.S. The Algorithm Design Manual, 3rd Edition. Springer, 2020. 793

14. Lutz M. Learning Python, 5th Edition. O‘Reilly Media, 2013. 1648 p.
15. Ramalho L. Fluent Python, 2nd Edition. O‘Reilly Media, 2022. 1012 p.

ISSN 2181-0842 | IMPACT FACTOR 4.525 97 @) e |

