
Ko‘p o‘lchovli massivlar va ularning funksiyalarini tadqiq

qilish, ularning o‘ziga xosligini hisobga olish

Gulbodom Oybek qizi Norqulova

BXU

Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlar va ularning

funksiyalarini kompleks tadqiq qilish amalga oshirilgan. Massivlarning matematik

modellari, tuzilishi, xotira tashkil etilishi va asosiy operatsiyalar to‘liq tahlil qilingan.

Tadqiqotda bir, ikki va yuqori o‘lchovli massivlar, ularning xususiyatlari, qo‘llanish

sohalari va amaliy dasturlashdagi ahamiyati o‘rganilgan. Maqolada massiv

funksiyalarining klassifikatsiyasi, yaratish va initsializatsiya, kirish va o‘zgartirish,

matematik operatsiyalar, qidiruv va saralash algoritmlari batafsil ko‘rib chiqilgan.

Massivlar bilan ishlashning algoritmik murakkabligi, xotira samaradorligi va

optimallash strategiyalari tahlil qilingan. Tadqiqot natijalari turli dasturlash tillarida

(Python, Java, C++) massivlarni qo‘llash usullari va zamonaviy hisoblash

texnologiyalarida ularning roli haqida keng ma’lumot beradi. Didaktik yondashuv

asosida massivlarni o‘qitish metodikasi ishlab chiqilgan.

Kalit so‘zlar: ko‘p o‘lchovli massivlar, massiv funksiyalari, ma’lumotlar

strukturasi, algoritmik murakkablik, xotira tashkil etilishi, indekslash tizimlari,

matritsali operatsiyalar, massiv algoritmlari, dasturlash, ma’lumotlar qayta ishlash,

tensorlar, massiv optimallashuvi, hisoblash samaradorligi

Study of Multidimensional Arrays and Their Functions

Considering Their Specific Features

Gulbodom Oybek qizi Norqulova

BXU

Abstract: This article presents a comprehensive study of multidimensional arrays

and their functions, taking into account their specific characteristics. The mathematical

models of arrays, their structure, memory organization, and fundamental operations are

thoroughly analyzed. The research examines one-dimensional, two-dimensional, and

higher-dimensional arrays, their properties, areas of application, and importance in

applied programming. The paper provides an in-depth discussion of array function

classification, creation and initialization, access and modification, mathematical

operations, search and sorting algorithms. The algorithmic complexity of array

processing, memory efficiency, and optimization strategies are analyzed. The research

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 85

findings offer extensive information on the use of arrays in various programming

languages (Python, Java, C++) and their role in modern computational technologies. A

didactic approach is employed to develop a methodology for teaching arrays.

Keywords: multidimensional arrays, array functions, data structures, algorithmic

complexity, memory organization, indexing systems, matrix operations, array

algorithms, programming, data processing, tensors, array optimization, computational

efficiency

Kirish

Ko‘p o‘lchovli massivlar zamonaviy dasturlash va hisoblash texnologiyalarining

asosiy ma’lumotlar strukturasi hisoblanadi. Ular katta hajmdagi tartibli ma’lumotlarni

saqlash, tashkil etish va samarali qayta ishlash imkonini beradi. Massivlar tushunchasi

dasturlashning dastlabki kunlaridan boshlab mavjud bo‘lsa-da, zamonaviy ilovalarda

ularning ahamiyati tobora ortib bormoqda.

Massiv - bu bir xil turdagi elementlarning tartiblangan to‘plami bo‘lib, har bir

elementga indeks orqali murojaat qilish mumkin. Bir o‘lchovli massiv chiziqli ketma-

ketlik, ikki o‘lchovli massiv jadval yoki matritsa, uch va undan yuqori o‘lchovli

massivlar esa tensorlar sifatida qaralishi mumkin. Massivlarning asosiy afzalligi -

elementlarga tezkor murojaat, ya’ni O(1) vaqt murakkabligi bilan istalgan elementni

olish imkoniyati.

Hozirgi kunda ko‘p o‘lchovli massivlar turli sohalarda keng qo‘llaniladi. Ilmiy

hisoblashlarda chiziqli algebra operatsiyalari, matritsali hisoblashlar va raqamli tahlil

massivlarsiz tasavvur qilinmaydi. Tasvirlarni qayta ishlashda har bir piksel massiv

elementi sifatida saqlanadi va rangli tasvirlar uch o‘lchovli massivlar (tinglik × kenglik

× rang kanallari) bilan ifodalanadi. Sun’iy intellekt va chuqur o‘rganishda neyron

tarmoqlar og‘irliklari va faollashtirish qiymatlari tensorlar (ko‘p o‘lchovli massivlar)

sifatida saqlanadi.

Ma’lumotlar tahlilida katta hajmdagi jadval ko‘rinishidagi ma’lumotlar ikki

o‘lchovli massivlarda saqlanadi va turli statistik operatsiyalar qo‘llaniladi. Video qayta

ishlashda har bir kadr ikki o‘lchovli massiv bo‘lib, butun video to‘rt o‘lchovli struktura

(vaqt × tinglik × kenglik × rang) sifatida qaralishi mumkin. O‘yinlar dasturlashda o‘yin

maydoni, xaritalar va ob’ektlar holatlari massivlar orqali ifodalanadi.

Massiv funksiyalari - bu massivlar ustida bajariladigan operatsiyalar majmuasi

bo‘lib, ular yaratish, o‘zgartirish, qidiruv, saralash, matematik hisoblashlar va boshqa

vazifalarni o‘z ichiga oladi. Har bir dasturlash tili o‘z standart kutubxonasida massiv

funksiyalarini taqdim etadi, lekin ularning tuzilishi, ishlash mexanizmi va

samaradorligi turlicha bo‘lishi mumkin.

Tadqiqotning maqsadi ko‘p o‘lchovli massivlar va ularning funksiyalarini to‘liq

tadqiq qilish, nazariy asoslarini yaratish, amaliy qo‘llanishlarni ko‘rsatish va samarali

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 86

dasturlash yo‘l-yo‘riqlarini ishlab chiqishdan iborat. Tadqiqot ob’ekti sifatida turli

o‘lchovdagi massivlar, ularning xususiyatlari, operatsiyalari va turli dasturlash tillarida

amalga oshirilishi tanlab olingan. Tadqiqot metodologiyasi nazariy tahlil, algoritmik

baholash, eksperimental o‘lchash va qiyosiy tahlilni o‘z ichiga oladi.

Asosiy qism

Massivlarning nazariy asoslari va matematik modeli

Massiv formal ravishda xaritalash sifatida aniqlanishi mumkin: A: I → T, bu

yerda I - indekslar to‘plami, T - elementlar turi. Bir o‘lchovli massiv uchun I = {0, 1,

2, ..., n-1} yoki I = {1, 2, ..., n}. Ikki o‘lchovli massiv uchun I = {0, ..., m-1} × {0, ...,

n-1}. Umumiy n-o‘lchovli massiv uchun I = I₁ × I₂ × ... × Iₙ (Dekart ko‘paytma).

Matematik jihatdan, bir o‘lchovli massiv vektor, ikki o‘lchovli massiv matritsa,

yuqori o‘lchovli massiv esa tensor sifatida qaraladi. Vektor v ∈ Rⁿ n ta haqiqiy

sonlardan iborat bo‘lib, v = (v₁, v₂, ..., vₙ) ko‘rinishda yoziladi. Matritsa A ∈ R^(m×n)

m qator va n ustundan tashkil topgan: A = [aᵢⱼ], bu yerda i = 1,...,m va j = 1,...,n.

Tensor T ko‘p indeksli ob’ekt bo‘lib, umumiy ko‘rinishda T = [tᵢ₁ᵢ₂...ᵢₙ]

ko‘rinishida yoziladi. Masalan, uch o‘lchovli tensor T ∈ R^(l×m×n) uchta indeksga

ega: T = [tᵢⱼₖ], bu yerda i = 1,...,l, j = 1,...,m, k = 1,...,n. Tensorlar fizikada (stress-strain

tensorlari), sun’iy intellektda (chuqur o‘rganish) va signallar qayta ishlashda keng

qo‘llaniladi.

Massivning asosiy xususiyatlari quyidagilardan iborat. O‘lchovlilik

(dimensionality) - massivning nechta indeks bilan aniqlanishi. Shakl (shape) - har bir

o‘lcham bo‘yicha elementlar soni, masalan, (3, 4, 5) shaklda uch o‘lchovli massiv.

Hajm (size) - umumiy elementlar soni, shakl komponentlarining ko‘paytmasi: 3 × 4 ×

5 = 60. Ma’lumot turi (dtype) - har bir elementning turi (int, float, char va boshqalar).

Massiv indekslash tizimlari dasturlash tillariga bog‘liq. 0-asosli indekslash (C,

Java, Python) 0 dan boshlanadi: A[0], A[1], ..., A[n-1]. 1-asosli indekslash (MATLAB,

Fortran, Lua) 1 dan boshlanadi: A(1), A(2), ..., A(n). Ko‘p o‘lchovli massivlarda qator-

ustun tartibi (row-major vs column-major) muhim: C/C++/Python da qator-ustun,

MATLAB/Fortran da ustun-qator.

Xotira tashkil etilishi va saqlash usullari

Massivlar xotirada uzluksiz blok sifatida saqlanadi, bu tezkor murojaat imkonini

beradi. Bir o‘lchovli massiv A[n] uchun xotira tuzilmasi oddiy: ketma-ket joylashgan

n ta element. Har bir elementning manzili: address(A[i]) = base_address + i ×

element_size, bu yerda base_address - massivning boshlang‘ich manzili, element_size

- bitta elementning xotira hajmi (baytlarda).

Ikki o‘lchovli massiv A[m][n] uchun ikki asosiy saqlash usuli mavjud. Qator-

ustun tartibi (row-major order, C tili) qatorlar ketma-ket saqlanadi: A[0][0], A[0][1], ...,

A[0][n-1], A[1][0], A[1][1], ... Element manzili: address(A[i][j]) = base_address + (i ×

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 87

n + j) × element_size. Bu tartib qatorlar bo‘yicha iteratsiya qilishda kesh

samaradorligini oshiradi.

Ustun-qator tartibi (column-major order, Fortran/MATLAB) ustunlar ketma-ket

saqlanadi: A[0][0], A[1][0], ..., A[m-1][0], A[0][1], A[1][1], ... Element manzili:

address(A[i][j]) = base_address + (j × m + i) × element_size. Bu tartib ustunlar

bo‘yicha iteratsiya qilishda samaraliroq. Saqlash tartibini bilish algoritmlarni

optimallashtirish uchun juda muhim.

Yuqori o‘lchovli massivlar uchun umumiy formula: n-o‘lchovli massiv

A[d₁][d₂]...[dₙ] ning elementi A[i₁][i₂]...[iₙ] manzili qator-ustun tartibida: address =

base_address + ((...((i₁ × d₂ + i₂) × d₃ + i₃)...) × dₙ + iₙ) × element_size. Bu rekursiv

formula har bir o‘lcham bo‘yicha offset hisoblaydi.

Stride tushunchasi xotira tashkil etilishida muhim. Stride - har bir o‘lcham

bo‘yicha keyingi elementga o‘tish uchun zarur baytlar soni. Bir o‘lchovli massivda

stride = element_size. Ikki o‘lchovli massivda qator stride’i = n × element_size, ustun

stride’i = element_size (row-major tartibda). Stride’lar massiv shaklini o‘zgartirish

(reshape) operatsiyasida o‘zgaradi.

Xotira joylashuvining ahamiyati kesh xotiradan samarali foydalanishda namoyon

bo‘ladi. Zamonaviy protsessorlar ma’lumotlarni kichik bloklarda (kesh chiziqlari,

odatda 64 bayt) yuklaydi. Agar massiv elementlariga xotirada joylashgan tartibda

murojaat qilsak, kesh hit rate yuqori bo‘ladi. Aksincha, tasodifiy murojaat yoki

noto‘g‘ri tartibda murojaat kesh miss’larni oshiradi va sekinlashtiradi.

Asosiy massiv funksiyalari va ularning tasnifi

Massiv funksiyalari maqsadiga ko‘ra bir nechta asosiy toifalarga bo‘linadi.

Yaratish va initsializatsiya funksiyalari yangi massiv ob’ektlarini hosil qiladi va

boshlang‘ich qiymatlar bilan to‘ldiradi. Kirish va o‘zgartirish funksiyalari

elementlarga murojaat va ularni yangilash imkonini beradi. Matematik operatsiyalar

funksiyalari arifmetik va algebraik amallarni bajaradi.

Qidiruv funksiyalari ma’lum elementni yoki shartga mos elementlarni topadi.

Saralash funksiyalari elementlarni tartibda joylashtiradi. Transformatsiya funksiyalari

massiv shaklini o‘zgartiradi. Agregatsiya funksiyalari statistik hisoblashlarni amalga

oshiradi (yig‘indi, o‘rtacha, maksimum). Filtratsiya funksiyalari shartga mos

elementlarni tanlaydi. Birlashtirish funksiyalari bir nechta massivlarni birlashtiriladi.

Python NumPy kutubxonasida massiv yaratish funksiyalari: numpy.array() -

listdan massiv yaratish, numpy.zeros(shape) - nollar bilan, numpy.ones(shape) - birlar

bilan, numpy.empty(shape) - initsializatsiyasiz, numpy.full(shape, value) - berilgan

qiymat bilan, numpy.arange(start, stop, step) - ketma-ketlik, numpy.linspace(start, stop,

num) - chiziqli bo‘lingan, numpy.eye(n) - birlik matritsasi,

numpy.random.random(shape) - tasodifiy sonlar.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 88

Java tilida massiv yaratish: int[] array = new int[n] - bir o‘lchovli, int[][] matrix =

new int[m][n] - ikki o‘lchovli, int[] array = {1, 2, 3} - boshlang‘ich qiymatlar bilan.

Arrays sinfi qo‘shimcha funksiyalarni taqdim etadi: Arrays.fill(array, value),

Arrays.copyOf(array, length), Arrays.sort(array), Arrays.binarySearch(array, key).

C++ da massiv yaratish: int array[n] - statik, int* array = new int[n] - dinamik,

std::vector<int> vec(n) - vektor konteyner, std::array<int, n> arr - std::array. Vektorlar

o‘lchamni dinamik o‘zgartirish imkonini beradi: vec.push_back(value),

vec.pop_back(), vec.resize(new_size). STL algoritmlari (std::sort, std::find, std::copy)

massivlar va konteynerlar uchun umumiy.

Indekslash va slicing operatsiyalari

Indekslash massiv elementlariga murojaat qilishning asosiy usuli. Oddiy

indekslash: array[i] bir o‘lchovli massivda, matrix[i][j] ikki o‘lchovli massivda.

Manfiy indekslash (Python) oxiridan hisoblash: array[-1] oxirgi element, array[-2]

oxiridan ikkinchi. Ko‘p o‘lchovli indekslash: array[i, j] yoki array[i][j] sintaksisi.

Slicing (kesish) massivning bir qismini ajratib olish. Oddiy slicing:

array[start:stop] start dan stop gacha (stop kiritmay). Qadamli slicing:

array[start:stop:step] har step-elementni olish. To‘liq o‘lcham: array[:] barcha

elementlar. Boshidan kesish: array[:n] birinchi n ta element. Oxiridan kesish: array[n:]

n-elementdan oxirigacha. Teskari tartiblash: array[::-1].

Ko‘p o‘lchovli slicing: matrix[start:stop, :] qatorlarni kesish, matrix[:, start:stop]

ustunlarni kesish, matrix[::2, ::2] har ikkinchi qator va ustun. Numpy da advanced

indexing imkoniyatlari keng: boolean indexing (array[array > 0] musbat elementlar),

fancy indexing (array[[0, 2, 4]] tanlangan indekslar), masking (array[mask] boolean

mask bo‘yicha).

Slicing operatsiyasining ichki mexanizmi: NumPy da slicing ko‘pincha view

(ko‘rinish) qaytaradi - yangi xotira ajratilmaydi, faqat stride va offset o‘zgaradi. Bu

xotirani tejaydi va tezroq ishlaydi. Lekin o‘zgartirish asl massivga ta’sir qiladi. Copy

(nusxa) yaratish uchun .copy() metodidan foydalanish kerak. Java va C++ da slicing

tabiiy qo‘llab-quvvatlanmaydi, lekin kutubxonalar orqali amalga oshirilishi mumkin.

Ellipsis (...) ko‘p o‘lchovli massivlarda barcha o‘lchamlarni qamrab olish uchun:

array[..., 0] oxirgi o‘lchamning birinchi elementi, array[0, ...] birinchi o‘lchamning

birinchi elementi. Newaxis (None) yangi o‘lcham qo‘shish uchun: array[np.newaxis, :]

(1, n) shaklga o‘zgartiradi. Bu broadcasting uchun foydali.

Matematik operatsiyalar va chiziqli algebra

Elementma-element operatsiyalar (element-wise) har bir elementga alohida

qo‘llaniladi. Arifmetik: A + B, A - B, A * B (element-wise ko‘paytirish), A / B, A **

n (darajaga ko‘tarish). Taqqoslash: A > B, A == B, A != B (boolean massiv qaytaradi).

Mantiqiy: A & B (and), A | B (or), ~A (not).

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 89

Broadcasting mexanizmi turli shaklдagi massivlarni operatsiyalarda ishlatish

imkonini beradi. Qoidalar: (1) O‘lchamlar soni tenglanadi (kichikroq massivga 1

o‘lchamlari qo‘shiladi). (2) Har bir o‘lcham bo‘yicha o‘lchamlar teng bo‘lishi yoki biri

1 bo‘lishi kerak. (3) Natija shakli - har bir o‘lcham bo‘yicha maksimum. Masalan, (3,

1) va (1, 4) → (3, 4).

Chiziqli algebra operatsiyalari: Matritsalarni ko‘paytirish: C = A @ B yoki

np.matmul(A, B), bu yerda A(m×n), B(n×p) → C(m×p). Transpozitsiya: A.T yoki

np.transpose(A). Determinant: np.linalg.det(A). Teskari matritsa: np.linalg.inv(A).

Xos qiyatlar: np.linalg.eig(A). Singular qiymatlar: np.linalg.svd(A).

Vektor operatsiyalari: Nuqtali ko‘paytma (dot product): np.dot(a, b) yoki a @ b.

Ichki ko‘paytma: np.inner(a, b). Tashqi ko‘paytma (outer product): np.outer(a, b) -

matritsa hosil qiladi. Xoch ko‘paytma (cross product): np.cross(a, b) (faqat 3D

vektorlar uchun). Norma: np.linalg.norm(a) Evklid normasi.

Matritsali yoyilmalar: LU yoyilmasi: A = LU (scipy.linalg.lu). QR yoyilmasi: A

= QR (np.linalg.qr). Cholesky yoyilmasi: A = LL^T musbat aniq matritsalar uchun

(np.linalg.cholesky). SVD: A = UΣV^T (np.linalg.svd). Bu yoyilmalar chiziqli

tizimlarni yechish, eng kichik kvadratlar masalasi va boshqa qo‘llanmalarda ishlatiladi.

Tensorli operatsiyalar: Tensorni qisqartirish (contraction): np.tensordot(A, B,

axes). Einstein yozuvi (np.einsum) murakkab tensorli operatsiyalarni qisqa ifoda qilish

uchun. Masalan, np.einsum(‘ij,jk->ik’, A, B) matritsalarni ko‘paytirish. Tensorli

ko‘paytma: np.kron(A, B) Kroneker ko‘paytmasi.

Qidiruv va saralash algoritmlari

Chiziqli qidiruv (linear search) eng oddiy usul: ketma-ket barcha elementlarni

tekshirish. Vaqt murakkabligi O(n). Python da: element in array, array.index(element).

NumPy da: np.where(array == value) barcha indekslarni qaytaradi. Afzalligi: massiv

tartiblangan bo‘lishi shart emas. Kamchiligi: katta massivlarda sekin.

Ikkilik qidiruv (binary search) tartiblangan massivlarda ishlaydi: o‘rtadagi

element bilan taqqoslash va qidirish oralig‘ini ikki baravarga kamaytirish. Vaqt

murakkabligi O(log n). Python da: bisect modulidan bisect_left, bisect_right. NumPy

da: np.searchsorted(array, value). Shartlar: massiv tartiblangan bo‘lishi kerak.

Saralash algoritmlari turli murakkablik va xususiyatlarga ega. Bubble sort: O(n²),

oddiy lekin sekin. Insertion sort: O(n²) eng yomon holat, O(n) yaxshi tartiblangan

uchun. Selection sort: O(n²), minimal almashtirishlar. Merge sort: O(n log n), barqaror,

qo‘shimcha xotira talab qiladi. Quick sort: O(n log n) o‘rtacha, O(n²) eng yomon,

joyida, barqaror emas. Heap sort: O(n log n), joyida, barqaror emas.

Python da: sorted(array) yangi tartiblangan list qaytaradi, array.sort() joyida

saralaydi. NumPy da: np.sort(array) yangi massiv, array.sort() joyida. Tartib:

ascending (default) yoki descending ([::-1] yoki sort_order parametr). Maxsus kalit

funksiya: sorted(array, key=lambda x: custom_key(x)).

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 90

Ko‘p o‘lchovli massivlarni saralash: axis parametri bo‘yicha. np.sort(matrix,

axis=0) ustunlarni saralaydi, np.sort(matrix, axis=1) qatorlarni saralaydi.

Leksikografik saralash: np.lexsort((array2, array1)) birinchi array1, keyin array2

bo‘yicha. Structured array’lar bir nechta maydon bo‘yicha saralash imkonini beradi.

Partial sort (qisman saralash): faqat k ta eng kichik/katta elementni topish to‘liq

saralashdan tezroq. np.partition(array, k) k-indeksga nisbatan partitsiya qiladi:

kichiklar chapda, kattalar o‘ngda, lekin har bir qism ichida tartib yo‘q. np.argpartition()

indekslarni qaytaradi. Vaqt murakkabligi O(n), to‘liq saralashdan (O(n log n)) tezroq.

Agregatsiya va statistik funksiyalar

Yig‘indi va o‘rtacha: np.sum(array) barcha elementlar yig‘indisi, np.mean(array)

o‘rtacha qiymat, np.average(array, weights) og‘irlikli o‘rtacha. Axis parametri:

np.sum(matrix, axis=0) har bir ustun yig‘indisi, np.sum(matrix, axis=1) har bir qator

yig‘indisi. keepdims=True o‘lchamlarni saqlaydi.

Ekstremal qiymatlar: np.min(array), np.max(array) minimal va maksimal

elementlar. np.argmin(array), np.argmax(array) minimal/maksimal elementlarning

indekslari. np.nanmin(array), np.nanmax(array) NaN qiymatlarni e’tiborsiz qoldiradi.

np.ptp(array) (peak-to-peak) diapazon: max - min.

Dispersiya va standart og‘ish: np.var(array) dispersiya, np.std(array) standart

og‘ish. ddof parametri (delta degrees of freedom): ddof=0 populatsiya dispersiya

(default), ddof=1 tanlanma dispersiya. Formula: var = Σ(x - mean)² / n, std = √var.

Dispersiya ma’lumotlarning tarqalishini o‘lchaydi.

Mediana va kvantillar: np.median(array) mediana (50-percentil).

np.percentile(array, q) q-percentil. np.quantile(array, q) kvantil (0 ≤ q ≤ 1). Mediana

chetki qiymatlarga o‘rtachadan kam ta’sirlanadi. Interquartile range (IQR) = Q3 - Q1

markaziy 50% diapazon.

Korrelyatsiya va kovariatsiya: np.corrcoef(x, y) korrelyatsiya koeffitsiyenti (-1

dan 1 gacha, 0 - bog‘liqlik yo‘q). np.cov(x, y) kovariatsiya matritsasi. np.correlate(x,

y) diskret korrelyatsiya (signal processing). Korrelyatsiya ikki o‘zgaruvchi orasidagi

chiziqli bog‘liqlikni o‘lchaydi.

Kumulyativ operatsiyalar: np.cumsum(array) kumulyativ yig‘indi,

np.cumprod(array) kumulyativ ko‘paytma. np.diff(array) qo‘shni elementlar ayirmasi.

Gradient: np.gradient(array) raqamli gradient. Bu funksiyalar vaqt qatorlari va

signallarni tahlil qilishda foydali.

Transformatsiya va shakl o‘zgartirish

Reshape (shakl o‘zgartirish): np.reshape(array, new_shape) yoki

array.reshape(new_shape). Umumiy elementlar soni bir xil bo‘lishi kerak: m × n = p ×

q. -1 parametri avtomatik hisoblash: array.reshape(-1) bir o‘lchovli, array.reshape(3, -

1) 3 qator, ustunlar avtomatik. Reshape ko‘pincha view qaytaradi (xotira

ko‘chirilmaydi).

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 91

Flatten va ravel: array.flatten() massivni bir o‘lchovli qiladi va copy qaytaradi.

array.ravel() ham bir o‘lchovli qiladi, lekin view qaytaradi (mumkin bo‘lsa). ravel

tezroq, lekin o‘zgartirish asl massivga ta’sir qiladi. Farq: flatten - doimo copy, ravel -

view (agar mumkin bo‘lsa).

Transpose: array.T yoki np.transpose(array) matritsani transpozitsiya qiladi (qator

↔ ustun). Ko‘p o‘lchovli uchun axes parametri: np.transpose(array, (2, 0, 1))

o‘lchamlar tartibini o‘zgartiradi. Transpozitsiya view qaytaradi, xotira ko‘chirilmaydi,

faqat stride’lar o‘zgaradi.

Squeeze va expand_dims: np.squeeze(array) 1 o‘lchamdagi o‘lchamlarni olib

tashlaydi, (1, 3, 1, 5) → (3, 5). np.expand_dims(array, axis) yangi 1 o‘lchamli o‘lcham

qo‘shadi. array[:, np.newaxis] ham shu maqsadda ishlatiladi. Bu broadcasting uchun

kerakli shaklni yaratishda foydali.

Concatenate va stack: np.concatenate([array1, array2], axis) massivlarni

birlashtiradi mavjud o‘lcham bo‘yicha. np.vstack([array1, array2]) vertikal (qatorlar

bo‘yicha), np.hstack([array1, array2]) gorizontal (ustunlar bo‘yicha). np.stack([array1,

array2], axis) yangi o‘lcham yaratib birlashtiradi. np.column_stack(), np.row_stack()

qulaylik funksiyalari.

Split: np.split(array, indices_or_sections, axis) massivni bo‘laklarga ajratadi.

np.array_split() teng bo‘lmagan bo‘laklar uchun. np.vsplit(), np.hsplit() vertikal va

gorizontal bo‘lish uchun maxsus. Split concatenate ga teskari operatsiya.

Xotira samaradorligi va optimallash

View vs copy farqi juda muhim. View - asl massiv bilan xotirani bo‘lishadi, copy

- mustaqil massiv yaratadi. View operatsiyalari: slicing (array[1:5]), transpose

(array.T), reshape (ba’zi hollarda). Copy operatsiyalari: fancy indexing (array[[1,3,5]]),

fancy slicing ba’zi hollarda. .copy() metodi aniq copy yaratadi.

Kontiguity (uzluksizlik): C-contiguous - qator-ustun tartibda uzluksiz, Fortran-

contiguous - ustun-qator tartibda. np.ascontiguousarray(array) C-contiguous qiladi,

np.asfortranarray(array) Fortran-contiguous. Uzluksiz massivlar ba’zi operatsiyalarda

tezroq. array.flags[‘C_CONTIGUOUS’] tekshirish.

In-place operatsiyalar xotirani tejaydi: array += 1 (yangi massiv yaratmaydi),

array *= 2. out parametri: np.add(a, b, out=result) natijani mavjud massivga yozadi.

Ufunc metodlari: np.add.accumulate(), np.add.reduce(), np.add.at() maxsus

operatsiyalar uchun.

Xotira bo‘shatish: del array Python da referencelarni olib tashlaydi, lekin xotirani

darhol bo‘shatmaydi (garbage collector hal qiladi). NumPy da katta massivlardan

foydalangandan keyin del qilish yaxshi amaliyot. Memmap (memory-mapped) fayllar

juda katta massivlar uchun: np.memmap() disk bilan integratsiya.

Dtype optimalasi: to‘g‘ri ma’lumot turini tanlash xotirani tejaydi. float64 o‘rniga

float32 (agar aniqlik yetarli bo‘lsa) xotirani ikki baravarga kamaytiradi. int8 (-128 to

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 92

127) kichik butun sonlar uchun, uint8 (0 to 255) musbat sonlar uchun.

array.astype(new_dtype) tur o‘zgartirish, lekin copy yaratadi.

Vektorizatsiya Python loop’larini NumPy operatsiyalari bilan almashtirish orqali

tezlashtiradi. Yomon: for i in range(n): result[i] = array[i] * 2. Yaxshi: result = array *

2. Vektorizatsiya C darajasida bajariladigan optimallashtirilgan koddan foydalanadi va

10-100x tezroq bo‘lishi mumkin.

Broadcasting to‘g‘ri qo‘llash ham samaradorlikni oshiradi: explicit loop o‘rniga

broadcasting ishlatish. Misol: matrix + vector (vector matritsa qatorlar soniga

broadcasting qilinadi). Lekin ehtiyot bo‘lish kerak: haddan tashqari broadcasting

xotirani ortiqcha ishlatishi mumkin.

Turli dasturlash tillarida massivlar

Python (NumPy): Eng mashhur ilmiy hisoblashlar kutubxonasi. array obyekti

ndarray sinfidan. Afzalliklari: qulay sintaksis, boy funksiyalar to‘plami, C/Fortran

bilan integratsiya (tezlik). Kamchiliklari: Python interpretatori overhead, GIL parallel

hisoblashni cheklaydi. NumPy massivlari immutable emas - o‘zgartirilishi mumkin.

Python (Pandas): Ma’lumotlar tahlili uchun, DataFrame (ikki o‘lchovli, ustunlar

turli turdagi). Series (bir o‘lchovli, indeksli). NumPy ustiga qurilgan, lekin yuqori

darajadagi abstraktsiya. SQL-ga o‘xshash operatsiyalar: groupby, merge, join. Time

series uchun maxsus qo‘llab-quvvatlash.

Java: Primitive massivlar (int[], double[][]) va object massivlari (String[]). Arrays

utility sinfi: Arrays.sort(), Arrays.binarySearch(), Arrays.fill(), Arrays.equals().

ArrayList - dinamik o‘lcham. Multidimensional: Array of arrays (int[][]) - jagged

arrays (qatorlar turli uzunlikda bo‘lishi mumkin). Apache Commons Math - ilmiy

hisoblashlar uchun.

C++: C-style massivlar (int array[10]), std::array<int, 10> (fixed size),

std::vector<int> (dynamic). STL algoritmlari: std::sort, std::find, std::copy. Eigen

kutubxonasi - chiziqli algebra, matritsali operatsiyalar. Armadillo - MATLAB-ga

o‘xshash sintaksis. Template programming - umumiy kod yozish imkoniyati.

MATLAB: Matritsa-markaziy muhit, har narsa matritsa. Built-in funksiyalar juda

ko‘p: matrix operatsiyalari, visualizatsiya, signallar qayta ishlash. 1-based indexing.

Colon operator: A(:, 1) birinchi ustun, A(1:3, :) birinchi uchta qator. Broadcast

avtomatik. Afzalligi: qulay, kuchli visualizatsiya. Kamchiligi: litsenziya to‘lovi,

umumiy dasturlash uchun cheklangan.

JavaScript (Typed Arrays): Float32Array, Int32Array va boshqalar - binary data

bilan ishlash uchun. Web Workers - parallel hisoblash. Math.js - ilmiy hisoblashlar

kutubxonasi. TensorFlow.js - mashinali o‘rganish browser’da. WebGL - GPU

hisoblashlari.

Parallel va GPU hisoblashlari

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 93

NumPy parallelizatsiya: Ko‘plab NumPy operatsiyalari avtomatik parallel

(BLAS/LAPACK orqali). Threadlar soni: os.environ["OMP_NUM_THREADS"] =

"4". Lekin Python GIL multiprocessing talab qilishi mumkin. Joblib, multiprocessing

modullari parallel loop’lar uchun.

GPU hisoblashlari CuPy bilan: NumPy-ga o‘xshash API, lekin GPU da. import

cupy as cp, cp.array(), cp.matmul(). Host (CPU) dan device (GPU) ga ma’lumotlarni

ko‘chirish: cp.asarray(numpy_array). Natijani qaytarish: cp.asnumpy(cupy_array).

Afzalligi: katta massivlar uchun 10-100x tezroq.

TensorFlow va PyTorch: Chuqur o‘rganish framework’lari, lekin umumiy tensor

operatsiyalari uchun ham. Avtomatik differentsiatsiya, GPU qo‘llab-quvvatlash.

Computational graph - operatsiyalar grafiki, optimallash imkoniyati. Eager execution

vs graph mode: PyTorch eager (Python kabi), TensorFlow ikkalasi ham (TF 2.0 dan

boshlab eager default).

Dask: Parallel NumPy - katta massivlar uchun. dask.array - NumPy API, lekin

lazy evaluation va chunking. Task scheduler - parallel bajarish. Distributed computing

- bir nechta mashinalar. Out-of-core computation - xotiradan kattaroq ma’lumotlar

bilan ishlash. Pandas integration (dask.dataframe).

OpenMP (C/C++): Parallel loop’lar uchun. #pragma omp parallel for - loop

parallel bajariladi. Shared memory parallelism. Threadlar soni:

omp_set_num_threads(). Reduction: #pragma omp parallel for reduction(+:sum) - har

bir thread o‘z summani hisoblaydi, keyin birlashtiriladi.

MPI (Message Passing Interface): Distributed memory parallelism - bir nechta

mashinalar. mpi4py - Python uchun. Scatter, gather, broadcast - ma’lumotlarni

taqsimlash. Point-to-point va collective communication. Supercomputer’larda keng

qo‘llaniladi.

Amaliy qo‘llanmalar va misollar

Tasvirlarni qayta ishlash: Tasvir = (tinglik × kenglik × 3) massiv, RGB kanallari.

Grayscale konvertatsiya: gray = 0.299R + 0.587G + 0.114*B. Filtratsiya:

konvolyutsiya operatsiyasi, masalan, Gaussian blur. Edge detection: Sobel, Canny

algoritmlari. Transformatsiya: rotate, crop, resize. PIL/Pillow, OpenCV kutubxonalari.

Vaqt qatorlari tahlili: Vaqt qatorlari = bir o‘lchovli massiv vaqt bo‘yicha. Moving

average: np.convolve(data, weights, mode=‘valid’). Trend extraction: linear regression.

Seasonality: Fourier transformatsiya. Autocorrelation: np.correlate(). Pandas - time

series uchun maxsus qo‘llab-quvvatlash: rolling, resampling.

Ma’lumotlar tahlili: Jadval = ikki o‘lchovli massiv (qatorlar = ob’ektlar, ustunlar

= xususiyatlar). Normalizatsiya: (x - mean) / std. Missing values: np.isnan(),

interpolation. Outliers: IQR usuli, Z-score. Feature engineering: polynomial features,

binning. Sklearn - machine learning, preprocessing.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 94

Chuqur o‘rganish: Neyron tarmoq og‘irliklari = matritsalar. Forward pass: z = Wx

+ b, a = activation(z). Backpropagation: gradientlar hisoblash. Mini-batch: (batch_size

× features) massiv. Convolutional layers: 4D tensorlar (batch × channels × height ×

width). PyTorch, TensorFlow framework’lari.

Simulatsiya va Monte-Carlo: Tasodifiy massivlar generatsiya:

np.random.random(), np.random.normal(). Physics simulation: zarrachalar

pozitsiyalari massivda. Monte Carlo integration: tasodifiy nuqtalar, o‘rtachani

hisoblash. Financial modeling: stock prices simulation. Agent-based models: har bir

agent - massiv elementi.

Xatolar va debugging

Index out of bounds: Eng keng tarqalgan xato - indeks massiv chegarasidan

tashqarida. Python: IndexError. Java: ArrayIndexOutOfBoundsException. C++:

undefined behavior (segmentation fault). Yechim: indekslarni tekshirish, assert

statement, boundary checks.

Shape mismatch: Operatsiyalarda massivlar shakli mos kelmasa. Broadcasting

qoidalarini buzish. Misol: (3, 4) + (5,) - xato. Yechim: reshape, broadcast_to, shaklni

tekshirish. ValueError: operands could not be broadcast together.

Memory errors: Juda katta massiv yaratishga urinish. MemoryError (Python).

Segmentation fault (C++). Yechim: ma’lumot turini optimallashtirish, chunking

(qismlarga bo‘lish), generator funksiyalar, memory-mapped files.

Type errors: Noto‘g‘ri ma’lumot turi. String va int qo‘shish. Implicit conversion

ba’zan kutilmagan natija beradi. Yechim: explicit type conversion, type hints (Python),

strong typing (Java, C++).

NaN va Inf: Not a Number (0/0, √-1) va Infinity (1/0). np.isnan(), np.isinf()

tekshirish. np.nan_to_num() NaN va Inf ni almayshtirish. Warning‘lar:

RuntimeWarning: invalid value encountered.

Performance issues: Sekin ishlash. Sabablari: Python loop’lari vektorizatsiya

o‘rniga, noto‘g‘ri xotira access pattern (kesh miss’lar), keraksiz nusxa (copy) yaratish.

Yechim: profiling (cProfile, line_profiler), vektorizatsiya, in-place operatsiyalar,

to‘g‘ri algoritm tanlash.

Xulosa

Ko‘p o‘lchovli massivlar va ularning funksiyalarini tadqiq qilish natijasida

quyidagi asosiy xulosalarga kelamiz.

Massivlar zamonaviy dasturlashning asosiy ma’lumotlar strukturasi bo‘lib,

tartibli ma’lumotlarni saqlash va tezkor murojaat qilish imkoniyatini beradi.

Matematik jihatdan massivlar vektorlar, matritsalar va tensorlar sifatida qaraladi va

chiziqli algebra apparati qo‘llaniladi. O‘lchovlilik, shakl, hajm va ma’lumot turi

massivning asosiy xarakteristikalaridir.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 95

Xotira tashkil etilishi massiv samaradorligining asosiy omili hisoblanadi. Qator-

ustun va ustun-qator saqlash tartiblari turli tillarda turlicha qo‘llaniladi. Xotirada

uzluksiz joylashish tezkor murojaat va kesh samaradorligini ta’minlaydi. Stride

tushunchasi xotira tuzilmasini to‘liq tavsiflaydi va shakl o‘zgartirish operatsiyalarida

muhim.

Massiv funksiyalari keng spektrni qamrab oladi va turli vazifalarga mo‘ljallangan.

Yaratish va initsializatsiya, kirish va o‘zgartirish, matematik operatsiyalar, qidiruv va

saralash, transformatsiya va agregatsiya - har bir toifa o‘z algoritmik murakkabligi va

qo‘llanish sohalariga ega.

Indekslash va slicing massivlar bilan ishlashning asosiy usullari bo‘lib,

ma’lumotlarga moslashuvchan murojaat imkonini beradi. NumPy da advanced

indexing (boolean, fancy) kuchli filtrlash va tanlash imkoniyatlarini taqdim etadi. View

va copy mexanizmlari xotira samaradorligini ta’minlaydi.

Matematik operatsiyalar massivlarning asosiy qo‘llanish sohasini tashkil etadi.

Elementma-element operatsiyalar, broadcasting, chiziqli algebra (matritsalarni

ko‘paytirish, transpozitsiya, yoyilmalar) ilmiy hisoblashlar va ma’lumotlar tahlilida

muhim. Vektorizatsiya Python loop’laridan ancha tezroq ishlaydi.

Qidiruv va saralash algoritmlari turli murakkablik va xususiyatlarga ega. Chiziqli

qidiruv oddiy lekin sekin, ikkilik qidiruv tartiblangan massivlarda samarali. Saralash

algoritmlari (merge sort, quick sort) O(n log n) murakkablikka ega. Partial sort faqat k

ta element kerak bo‘lganda samaraliroq.

Agregatsiya va statistik funksiyalar ma’lumotlar tahlilida keng qo‘llaniladi.

Yig‘indi, o‘rtacha, dispersiya, korrelyatsiya kabi ko‘rsatkichlar ma’lumotlarni

xarakteristikalaydi. Axis parametri ko‘p o‘lchovli massivlarda operatsiyalarni

moslashuvchan qo‘llash imkonini beradi.

Transformatsiya operatsiyalari massiv shaklini o‘zgartirish va manipulyatsiya

qilish imkonini beradi. Reshape, transpose, concatenate, split - asosiy

transformatsiyalar. View yaratish xotirani tejaydi, lekin asl massivga ta’sir qilish

xavfini yaratadi.

Xotira samaradorligi va optimallash dastur tezligi uchun muhim. In-place

operatsiyalar, to‘g‘ri dtype tanlash, contiguous massivlar, vektorizatsiya - asosiy

optimallash strategiyalari. Profiling xatoliklar va sekinliklar manbalarini aniqlashga

yordam beradi.

Turli dasturlash tillarida massivlarning o‘ziga xos xususiyatlari mavjud.

Python/NumPy - ilmiy hisoblashlar uchun qulay, Java - korporativ ilovalar uchun

mustahkam, C++ - maksimal nazorat va tezlik, MATLAB - matritsa operatsiyalari

uchun maxsus. Har bir til o‘z ekosistemasiga va qo‘llanish sohalariga ega.

Parallel va GPU hisoblashlari katta massivlar bilan ishlashni sezilarli tezlashtiradi.

NumPy ning avtomatik parallelizatsiyasi, CuPy ning GPU qo‘llab-quvvatlashi,

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 96

TensorFlow va PyTorch ning kuchli imkoniyatlari zamonaviy hisoblash

texnologiyalarining asosini tashkil etadi.

Amaliy qo‘llanmalar juda keng: tasvirlarni qayta ishlash, vaqt qatorlari tahlili,

ma’lumotlar tahlili, chuqur o‘rganish, simulatsiya - barchasida massivlar markaziy rol

o‘ynaydi. Har bir soha o‘z maxsus kutubxonalari va usullariga ega.

Tadqiqot ko‘rsatdiki, ko‘p o‘lchovli massivlarni to‘liq tushunish nazariy bilim

(matematik asoslar), algoritmik fikrlash (murakkablik tahlili) va amaliy ko‘nikmalarni

(dasturlash, debugging) birlashtiradi. Bu bilimlar zamonaviy dasturchi uchun zarurdir.

Foydalanilgan adabiyotlar

1. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C. Introduction to Algorithms,

3rd Edition. MIT Press, 2009. 1312 p.

2. McKinney W. Python for Data Analysis, 2nd Edition. O‘Reilly Media, 2017.

544 p.

3. VanderPlas J. Python Data Science Handbook. O‘Reilly Media, 2016. 541 p.

4. Goodfellow I., Bengio Y., Courville A. Deep Learning. MIT Press, 2016. 775

p.

5. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. Numerical

Recipes, 3rd Edition. Cambridge University Press, 2007. 1235 p.

6. Stroustrup B. The C++ Programming Language, 4th Edition. Addison-Wesley,

2013. 1376 p.

7. Bloch J. Effective Java, 3rd Edition. Addison-Wesley, 2018. 416 p.

8. Harris C.R., Millman K.J., van der Walt S.J. et al. Array programming with

NumPy // Nature. 2020. Vol. 585. P. 357-362.

9. Strang G. Introduction to Linear Algebra, 5th Edition. Wellesley-Cambridge

Press, 2016. 584 p.

10. Golub G.H., Van Loan C.F. Matrix Computations, 4th Edition. Johns Hopkins

University Press, 2013. 756 p.

11. Седжвик Р. Фундаментальные алгоритмы на C++. Анализ/Структуры

данных/Сортировка/Поиск. СПб: ДиаСофтЮП, 2002. 688 с.

12. Кнут Д. Искусство программирования, том 1. Основные алгоритмы. М.:

Вильямс, 2006. 720 с.

13. Skiena S.S. The Algorithm Design Manual, 3rd Edition. Springer, 2020. 793

p.

14. Lutz M. Learning Python, 5th Edition. O‘Reilly Media, 2013. 1648 p.

15. Ramalho L. Fluent Python, 2nd Edition. O‘Reilly Media, 2022. 1012 p.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 97

