
Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning tahlili

va ularning tuzilishdagi matematik tavsifi

Gulbodom Oybek qizi Norqulova

BXU

Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlarda belgilangan

funksiyalarning chuqur tahlili va ularning matematik tuzilishi tadqiq qilingan. Massiv

funksiyalarining formal matematik tavsifi, algebraik xususiyatlari, funksional

kompozitsiya va hisoblash murakkabligi to‘liq o‘rganilgan. Tadqiqotda

funksiyalarning domenlar va ko‘domenlar, injektivlik va surektivlik xususiyatlari,

chiziqlilik va gomomorfizm tushunchalari tahlil qilingan. Maqolada funksiyalarning

kategorik tavsifi, funktorlar va natural transformatsiyalar, monadik strukturalar va

ularning massiv operatsiyalaridagi roli batafsil ko‘rib chiqilgan. Massiv

funksiyalarining tiplash tizimlari, polimorfizm va generiklik, lambda hisob va

funksional dasturlash paradigmasi bilan bog‘liqligi o‘rganilgan. Tadqiqot natijalari

zamonaviy dasturlash tillarida massiv funksiyalarini to‘g‘ri loyihalash, samarali

amalga oshirish va formal verifikatsiya qilish uchun nazariy asos yaratadi.

Kalit so‘zlar: massiv funksiyalari tahlili, matematik tuzilish, funksional

dasturlash, kategoriyalar nazariyasi, tip sistemalari, funktorlar, monadlar,

gomomorfizm, kompozitsiya, polimorfizm, lambda hisob, formal tavsif, algebraik

strukturalar

Analysis of Functions Defined on Multidimensional Arrays

and Their Mathematical Structural Description

Gulbodom Oybek qizi Norqulova

BIU

Abstract: This article presents an in-depth analysis of functions defined on

multidimensional arrays and their mathematical structural properties. The formal

mathematical characterization of array functions, their algebraic features, functional

composition, and computational complexity are thoroughly examined. The study

analyzes domains and codomains of functions, injectivity and surjectivity, linearity,

and the concept of homomorphism. The paper provides a detailed discussion of the

categorical description of functions, functors and natural transformations, monadic

structures, and their role in array operations. The type systems of array functions,

polymorphism and genericity, as well as their relationship with lambda calculus and

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 98

the functional programming paradigm, are explored. The results offer a theoretical

foundation for the correct design, efficient implementation, and formal verification of

array functions in modern programming languages.

Keywords: array function analysis, mathematical structure, functional

programming, category theory, type systems, functors, monads, homomorphism,

composition, polymorphism, lambda calculus, formal specification, algebraic

structures

Kirish

Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning matematik tahlili va

tuzilishini o‘rganish zamonaviy hisoblash matematikasi va dasturlash nazariyasining

muhim yo‘nalishi hisoblanadi. Funksiyalar - dasturlashning asosiy abstraktsiyasi bo‘lib,

ular ma’lumotlarni transformatsiya qilish, hisoblashlarni tashkil etish va murakkab

tizimlarni qurish uchun zarur vositadir.

Massiv funksiyalari oddiy matematik funksiyalardan murakkabligida farq qiladi,

chunki ular ko‘p o‘lchovli strukturalar ustida ishlaydi, turli xil operatsiyalarni qo‘llab-

quvvatlaydi va hisoblash samaradorligiga katta ta’sir ko‘rsatadi. Funksiyalarning

matematik tavsifi ularning xususiyatlarini formal tarzda ifodalash, to‘g‘riligini

isbotlash va optimallashtirish imkoniyatlarini aniqlash uchun zarur.

Funksiyalarning tuzilishi bir necha darajada tahlil qilinishi mumkin. Sintaktik

daraja funksiyaning ta’rif va ishlatilish sintaksisini tavsiflaydi. Semantik daraja

funksiyaning ma’nosini, ya’ni u qanday hisoblashni bajarishini ifodalaydi. Pragmatik

daraja funksiyaning amaliy xususiyatlarini - samaradorlik, xotira sarfi,

parallellashtirish imkoniyatlarini o‘z ichiga oladi.

Kategoriyalar nazariyasi funksiyalarni umumiy va abstrakt darajada o‘rganish

uchun kuchli matematik apparatni taqdim etadi. Funktorlar, natural transformatsiyalar,

monadlar kabi tushunchalar murakkab funksional strukturalarni tavsiflash va

tizimlashtirish imkonini beradi. Bu yondashuv zamonaviy funksional dasturlash

tillarida (Haskell, Scala, F#) keng qo‘llaniladi.

Tip sistemalari funksiyalarning xavfsizligini ta’minlash va xatolarni

kompilyatsiya vaqtida aniqlash uchun muhim. Polimorfizm va generiklik umumiy

funksiyalar yozish imkonini beradi. Parametrik polimorfizm tiplardan mustaqil ishlash,

ad-hoc polimorfizm esa overloading va type classes orqali turli tiplar uchun maxsus

realizatsiyalar yaratish imkonini beradi.

Lambda hisob funksiyalarning eng abstrakt matematik modeli bo‘lib,

hisoblashning asosiy tamoyillarini ifodalaydi. Church-Turing tezisi lambda hisobning

Turing mashinalari bilan ekvivalentligini ta’kidlaydi. Curry-Howard izomorfizmi

mantiq va tiplar nazariyasi o‘rtasidagi chuqur bog‘liqlikni ko‘rsatadi: isbotlar

dasturlarga, formulalar esa tiplarga mos keladi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 99

Tadqiqotning maqsadi ko‘p o‘lchovli massiv funksiyalarining to‘liq matematik

tahlilini amalga oshirish, ularning tuzilishini formal tavsiflash, xususiyatlarini

sistemalashtirish va zamonavir dasturlash amaliyotiga nazariy asos yaratishdan iborat.

Tadqiqot ob’ekti sifatida turli toifadagi massiv funksiyalari, ularning algebraik va

kategorik xususiyatlari, tip sistemalari va formal semantika tanlab olingan.

Asosiy qism

Funksiyalarning formal matematik tavsifi

Funksiya matematikada ikkita to‘plam orasidagi xaritalash sifatida aniqlanadi.

Formal ta’rif: funksiya f: A → B - bu to‘plamlar A (domen) dan B (kodomen) ga

xaritalash bo‘lib, har bir a ∈ A uchun yagona b ∈ B mavjud bo‘lib, f(a) = b. Bu ta’rif

funksiyaning aniqlanganligini (har bir kirish uchun natija mavjud) va determinizimini

(bir kirish uchun faqat bitta natija) kafolatlaydi.

Massiv funksiyalari umumiy shaklda f: Array[T₁] → Array[T₂] yoki ko‘p

parametrli: f: Array[T₁] × Array[T₂] × ... → Array[T_out] ko‘rinishda yoziladi. Bu

yerda Array[T] - T tipidagi elementlardan tashkil topgan massivlar to‘plami. Masalan,

map funksiyasi: map: (T₁ → T₂) × Array[T₁] → Array[T₂] - birinchi argument funksiya,

ikkinchisi massiv.

Qisman qo‘llaniladigan funksiyalar (partial functions) ba’zi kirish qiymatlarida

aniqlanmagan bo‘lishi mumkin. Masalan, division funksiyasi div: ℝ × ℝ → ℝ ikkinchi

argument 0 bo‘lganda aniqlanmagan. To‘liq funksiyalar (total functions) barcha kirish

qiymatlari uchun aniqlangan. Dasturlashda qisman funksiyalar exception yoki

Option/Maybe tiplari orqali boshqariladi.

Funksiyaning grafigi Γ(f) = {(a, f(a)) : a ∈ A} ⊆ A × B to‘plami funksiyani to‘liq

tavsiflaydi. Ikki funksiya f va g teng (f = g), agar ularning domenlari bir xil va barcha

a uchun f(a) = g(a) bo‘lsa. Bu ekstensional tenglik deyiladi (natijalar bo‘yicha).

Intensional tenglik ta’riflar bo‘yicha tenglikni bildiradi.

Funksiya kompozitsiyasi murakkab operatsiyalarni oddiy operatsiyalardan qurish

imkonini beradi. Agar f: A → B va g: B → C bo‘lsa, kompozitsiya g ∘ f: A → C

quyidagicha: (g ∘ f)(a) = g(f(a)). Kompozitsiya assotsiativ: h ∘ (g ∘ f) = (h ∘ g) ∘ f, lekin

kommutativ emas: g ∘ f ≠ f ∘ g (umuman).

Identifikatsiya funksiyasi id_A: A → A har bir elementni o‘ziga akslantiradi:

id_A(a) = a. Bu kompozitsiyaning neytral elementi: f ∘ id_A = f va id_B ∘ f = f. Har

bir to‘plam uchun yagona identifikatsiya funksiyasi mavjud.

Injektivlik, surektivlik va bijektivlik

Funksiyaning muhim xususiyatlari uning elementlarni qanday akslantirishi bilan

bog‘liq. Injektiv funksiya (in’ektsiya, bir-birlikli) f: A → B - turli elementlar turli

qiymatlarga akslanadi: a₁ ≠ a₂ ⇒ f(a₁) ≠ f(a₂). Ekvivalent: f(a₁) = f(a₂) ⇒ a₁ = a₂.

Injektivlik funksiyaning "ma’lumotni yo‘qotmasligi"ni bildiradi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 100

Surektiv funksiya (sur’ektsiya, ustiga) f: A → B - har bir b ∈ B uchun kamida

bitta a ∈ A mavjud bo‘lib, f(a) = b. Ya’ni, kodomenning barcha elementlari "erishiladi".

Formal: ∀b ∈ B, ∃a ∈ A: f(a) = b. Surektivlik funksiyaning "to‘liq qoplamini" bildiradi.

Bijektiv funksiya (bijektsiya, o‘zaro bir qiymatli moslik) ham injektiv, ham

surektiv. Bijektiv funksiya A va B to‘plamlar o‘rtasida "mukammal moslik" o‘rnatadi.

Har bir bijektiv funksiya uchun teskari funksiya f⁻¹: B → A mavjud bo‘lib, f⁻¹(f(a)) =

a va f(f⁻¹(b)) = b. Teskari funksiya ham bijektiv.

Massiv funksiyalari kontekstida: map funksiyasi injektiv emas (turli massivlar bir

xil natijaga olib kelishi mumkin). filter funksiyasi surektiv emas (barcha mumkin

massivlar hosil qilinmaydi). reverse funksiyasi bijektiv (har bir massivning yagona

teskari tartibi bor va barcha tartiblar erishiladi).

Kardinallık (to‘plam quvvati) bilan bog‘liqlik: Agar f: A → B injektiv bo‘lsa, |A|

≤ |B|. Agar surektiv bo‘lsa, |A| ≥ |B|. Agar bijektiv bo‘lsa, |A| = |B|. Cantor teoremasi:

har qanday to‘plam A uchun |A| < |𝒫(A)| (quvvat to‘plami kattaroq). Bu cheksiz

to‘plamlar ierarxiyasini yaratadi.

Teskari tasvir (preimage) f⁻¹(B’) = {a ∈ A : f(a) ∈ B’} - funksiya natijasi B’ ga

tegishli barcha elementlar. Teskari tasvir har doim to‘plam qaytaradi (funksiya injektiv

bo‘lmasa ham). Xususiyatlar: f⁻¹(B₁ ∪ B₂) = f⁻¹(B₁) ∪ f⁻¹(B₂), f⁻¹(B₁ ∩ B₂) = f⁻¹(B₁) ∩

f⁻¹(B₂).

Yuqori tartibli funksiyalar va funksional abstraktsiya

Yuqori tartibli funksiyalar (higher-order functions) boshqa funksiyalarni

argument sifatida qabul qiladi yoki natija sifatida qaytaradi. Bu funksional

dasturlashning asosiy tushunchasi bo‘lib, abstraktsiya darajasini oshiradi.

Map funksiyasi klassik misoldir: map: (a → b) → [a] → [b], bu yerda [a] - a

tipidagi elementlar ro‘yxati. Map har bir element uchun berilgan funksiyani qo‘llaydi:

map f [x₁, x₂, ..., xₙ] = [f(x₁), f(x₂), ..., f(xₙ)]. Map funktorning funksional ekvivalenti.

Filter funksiyasi shartga mos elementlarni tanlaydi: filter: (a → Bool) → [a] →

[a]. filter p [x₁, x₂, ..., xₙ] = [xᵢ : p(xᵢ) = True]. Bu to‘plamlar nazariyasidagi {x ∈ A :

P(x)} notation’iga mos keladi.

Fold (reduce) funksiyasi massivni bitta qiymatga "yig‘adi": foldl: (b → a → b) →

b → [a] → b. foldl f z [x₁, x₂, ..., xₙ] = f(... f(f(z, x₁), x₂) ..., xₙ). Bu iterativ jarayon.

foldr o‘ngdan boshlaydi va lazy evaluation imkonini beradi.

Funksiyalarni qaytarish (function returning): curry funksiyasi ko‘p parametrli

funksiyani bir parametrli funksiyalar zanjiriga aylantiradi: curry: ((a, b) → c) → (a →

(b → c)). Masalan, add: (Int, Int) → Int ni curry add: Int → (Int → Int) ga. Bu Currying

deyiladi (Haskell Curry sharafiga).

Kompozitsiya operatori (∘) ham yuqori tartibli funksiya: (∘): (b → c) → (a → b)

→ (a → c). Bu funksiyalarni "ulash" imkonini beradi: (g ∘ f)(x) = g(f(x)). Point-free

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 101

style - argumentlarni ko‘rsatmasdan funksiyalarni ta’riflash: sumSquares = sum ∘ (map

square).

Funksional pipeline (|>) operatori chap-o‘ng tartibda yozish imkonini beradi: x |>

f = f(x). Bu imperativ dasturlashga o‘xshash tartib yaratadi: data |> filter p |> map f |>

sum. Ko‘plab zamonaviy tillarda (F#, Elixir, JavaScript) qo‘llab-quvvatlanadi.

Partial application funksiyaning ba’zi argumentlarini "fiksatlash": let add5 = add

5 in add5 3 = 8. Bu yangi, maxsuslashtizilgan funksiyalar yaratish imkonini beradi.

Closure - funksiya o‘z muhitidagi o‘zgaruvchilarni "eslab qoladi": let makeAdder x =

λy. x + y in let add5 = makeAdder 5.

Chiziqlilik va gomomorfizm

Chiziqli funksiya vektorli fazolar orasidagi xaritalash bo‘lib, ikki xossani

qanoatlantiradi: f(x + y) = f(x) + f(y) (additivlik) va f(αx) = αf(x) (bir jinslіlik).

Birlashtirilgan: f(αx + βy) = αf(x) + βf(y). Chiziqli funksiyalar chiziqli algebra va

geometriyada asosiy rol o‘ynaydi.

Massiv kontekstida, map chiziqli: map f (xs ++ ys) = map f xs ++ map f ys, bu

yerda ++ - ro‘yxatlarni birlashtirish. Lekin map chiziqli operator emas (vektorli fazolar

orasida emas), balki funktordir (kategoriyalar nazariyasida).

Gomomorfizm - algebraik strukturani saqlovchi xaritalash. Agar (A, *) va (B, ·)

- ikki guruh bo‘lsa, gomomorfizm f: A → B quyidagini qanoatlantiradi: f(a * b) =

f(a) · f(b). Masalan, logarifm gomomorfizm: log(xy) = log(x) + log(y) (ko‘paytirish →

qo‘shish).

Izomorfizm - bijektiv gomomorfizm. Agar f: A → B izomorfizm bo‘lsa, teskari

f⁻¹: B → A ham gomomorfizm. Izomorf strukturalar "matematik jihatdan bir xil"

hisoblanadi. Masalan, (ℝ, +) va (ℝ⁺, ×) izomorf: f(x) = eˣ, f⁻¹(y) = ln(y).

Endomorfizm - gomomorfizm A → A (bir xil to‘plamga). Avtomorfizm - bijektiv

endomorfizm. Masalan, matritsa transpozitsiyasi M_{m×n} → M_{n×m}

gomomorfizm, lekin endomorfizm faqat kvadrat matritsalar uchun (n = m).

List funksiyalari va gomomorfizm: map f funktor gomomorfizm: map f [] = [],

map f (x:xs) = f(x) : map f xs. filter ham "qisman" gomomorfizm. concat: [[a]] → [a]

monoid gomomorfizm: concat (xs ++ ys) = concat xs ++ concat ys.

Amaliy ahamiyat: gomomorfizmlar parallel hisoblashni osonlashtiradi. Agar f

gomomorfizm bo‘lsa, f(a * b) = f(a) · f(b), u holda f(a) va f(b) parallel hisoblanishi

mumkin. Map-reduce paradigmasi shu prinsipga asoslangan: map bosqichi parallel,

reduce gomomorfizm bo‘lsa, u ham parallellashtirish mumkin.

Kategoriyalar nazariyasi va funktorlar

Kategoriya C - ob’ektlar to‘plami va ular orasidagi morfizmlar (o‘qlar) majmuasi

bo‘lib, quyidagi aksiomalarga bo‘ysinadi: (1) Har bir ob’ekt A uchun identifikatsiya

morfizmi id_A: A → A mavjud. (2) Morfizmlar kompozitsiyalanishi mumkin: agar f:

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 102

A → B va g: B → C bo‘lsa, g ∘ f: A → C. (3) Kompozitsiya assotsiativ: h ∘ (g ∘ f) =

(h ∘ g) ∘ f. (4) Identifikatsiya neytral element: f ∘ id_A = f, id_B ∘ f = f.

Misollar: Set kategoriyasi - ob’ektlar to‘plamlar, morfizmlar funksiyalar. Vect

kategoriyasi - ob’ektlar vektorli fazolar, morfizmlar chiziqli operatorlar. Grp

kategoriyasi - ob’ektlar guruhlar, morfizmalar gomomorfizmlar. Hask kategoriyasi -

ob’ektlar Haskell tiplari, morfizmlar funksiyalar (taqriban).

Funktor F: C → D - ikki kategoriya orasidagi "strukturani saqlovchi" xaritalash.

Funktor ob’ektlarni ob’ektlarga va morfizmlarni morfizmlarga akslantiradi: F(A) - D

dagi ob’ekt, F(f: A → B) = F(f): F(A) → F(B) - D dagi morfizm. Shartlar: (1) F(id_A)

= id_{F(A)}. (2) F(g ∘ f) = F(g) ∘ F(f) (kompozitsiya saqlanadi).

List funktori: List: Hask → Hask. Ob’ektlarga: List(A) = [A]. Morfizmlarga:

List(f) = map f. Tekshirish: map id = id (birinchi qonun), map (g ∘ f) = map g ∘ map f

(ikkinchi qonun). List - endofunktor (bir kategoriyada).

Maybe funktori: Maybe(A) = Just A | Nothing. fmap: (a → b) → Maybe a →

Maybe b. fmap f (Just x) = Just (f x), fmap f Nothing = Nothing. Bu qisman

funksiyalarni to‘liq funksiyalarga "lift" qilish imkonini beradi.

Funktorlarning kompozitsiyasi ham funktor: agar F: C → D va G: D → E

funktorlar bo‘lsa, G ∘ F: C → E ham funktor. Identifikatsiya funktor Id: C → C

ob’ektlar va morfizmlarni o‘zgartirsiz qoldiradi. Funktorlar o‘zlari kategoriya tashkil

etadi: ob’ektlar - funktorlar, morfizmlar - natural transformatsiyalar.

Kontravariant funktor teskari yo‘nalish morfizmlarni akslantiradi: F(f: A → B):

F(B) → F(A). Masalan, Hom funktor: Hom(-, A): C^op → Set (C^op - teskari

kategoriya). Kovariant funktor oddiy yo‘nalish: F(f: A → B): F(A) → F(B). Odatda

"funktor" deganda kovariant nazarda tutiladi.

Natural transformatsiyalar va funktorlar orasidagi morfizmlar

Natural transformatsiya α: F ⇒ G - ikki funktor F, G: C → D orasidagi "uniform"

xaritalash. Har bir C dagi ob’ekt A uchun D dagi morfizm α_A: F(A) → G(A) mavjud

bo‘lib, naturality sharti bajariladi: har bir f: A → B morfizm uchun G(f) ∘ α_A = α_B

∘ F(f) (kommutativ kvadrat).

Misol: reverse: List ⇒ List. Har bir tip A uchun reverse_A: [A] → [A]. Naturality:

reverse ∘ map f = map f ∘ reverse. Bu shuni bildiriki, map f ni oldin yoki keyin qo‘llash

natija bir xil.

Monad - maxsus struktura funktorlar bilan: monad T kategoriya C da uchta

komponentdan iborat: (1) Endofunktor T: C → C. (2) Natural transformatsiya η: Id ⇒

T (unit yoki return). (3) Natural transformatsiya μ: T ∘ T ⇒ T (join yoki flatten).

Shartlar (monad qonunlari): μ ∘ T(μ) = μ ∘ μ(T) (assotsiativlik), μ ∘ T(η) = μ ∘ η(T) =

id (identifikatsiya).

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 103

List monad: T = List, η(x) = [x] (singleton), μ = concat. Maybe monad: T = Maybe,

η(x) = Just x, μ(Just (Just x)) = Just x, μ_ = Nothing (boshqa hollarda). State monad,

IO monad, Reader monad - dasturlashda keng qo‘llaniladigan monadlar.

Monad va hisoblash: monad "hisoblash konteksti"ni ifodalaydi. Maybe -

muvaffaqiyatsizlik mumkinligi, List - noaniqlik (ko‘p natija), IO - I/O effektlar, State

- holat o‘zgarishi. Bind operatori (>>=): m >>= f = μ(T(f)(m)) hisoblashlarni ketma-

ket bog‘lash imkonini beradi.

Do-notation (Haskell) monadik hisoblashlarni imperativ ko‘rinishda yozish

sintaktik shakar: do {x ← m; f x} ≡ m >>= f. Bu monоdlarni oddiy kod sifatida ishlatish

imkonini beradi, lekin qat’iy matematik semantikaga ega.

Monadlarning amaliy ahamiyati: (1) Side effects’larni boshqarish (IO monad). (2)

Xatolarni boshqarish (Maybe, Either monad). (3) Holatni boshqarish (State monad). (4)

Noaniqlikni ifodalash (List monad). (5) Dependency injection (Reader monad).

Monadlar "programmable semicolon" - hisoblashlar orasidagi o‘tishni dasturlash

imkoniyati.

Tip sistemalari va polimorfizm

Tip sistemi - dasturlash tilining statik tahlil qismi bo‘lib, programmadagi ifodalar

tiplitini tekshiradi va tiр xatolarini kompilyatsiya vaqtida aniqlaydi. Maqsad: runtime

xatolarini kamaytirish, programmaning to‘g‘riligini ta’minlash.

Oddiy tiр sistemasi (Simply Typed Lambda Calculus): bazis tiplari (Int, Bool) va

funksiya tiplari (A → B). Tip qoidalari: (1) Har bir o‘zgaruvchi tipga ega. (2) Agar f:

A → B va x: A bo‘lsa, f(x): B. (3) Agar x: A ⊢ e: B bo‘lsa (x tipida A kontekstda e

tipida B), λx. e: A → B.

Polimorfizm - umumiy kod yozish imkoniyati. Parametrik polimorfizm (generics):

funksiya barcha tiplar uchun bir xil ishlaydi. Misol: identity: ∀a. a → a, id x = x.

Haskell da: id :: a -> a. Java da: <T> T identity(T x). Parametrik polimorfizm "free

theorems" beradi (Wadler): tip signaturasidan xatti-harakatni xulosa qilish.

Ad-hoc polimorfizm - funksiya turli tiplar uchun turli amalga oshiriladi.

Overloading: + operatori Int va Float uchun turlicha. Type classes (Haskell): class Eq

a where (==) :: a -> a -> Bool. Instance: instance Eq Int where x == y = ... Typeclass

polimorfizmdan kuchliroq: qo‘shimcha cheklovlar (constraints).

Subtype polimorfizm (OOP): agar B A ning subtype’i bo‘lsa (B <: A), B tipidagi

qiymat A tipida ishlatilishi mumkin. Liskov substitution prinsipi: subtype supertype’ni

to‘liq almashtirishi kerak. Variance: covariance (B <: A ⇒ List[B] <: List[A]),

contravariance, invariance.

Dependent types - tiplar qiymatlarga bog‘liq bo‘lishi mumkin. Misol: Vector n a

- uzunligi n bo‘lgan vektor. append: Vector n a -> Vector m a -> Vector (n+m) a.

Dependent types juda kuchli: matematik isbotlarni kod sifatida ifodalash (Curry-

Howard isomorphism). Coq, Agda, Idris tillari dependent types qo‘llab-quvvatlaydi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 104

Algebraic Data Types (ADT): sum types (yoki tagged unions): data Maybe a =

Just a | Nothing. Product types (tuples, records): (Int, String). ADT patterna matching

bilan birga kuchli abstraktsiya yaratadi. GADTs (Generalized ADTs) yanada kuchliroq.

Tip inference - tiplarni avtomatik aniqlash. Hindley-Milner algoritmi: let

polimorfizmni qo‘llab-quvvatlaydi va to‘liq tip annotatsiyalarni talab qilmaydi.

Haskell, OCaml, F# da ishlatiladi. Tip xatolari kompilyatsiya vaqtida aniqlanadi, bu

runtime xatolarini kamaytiradi.

Lambda hisob va funksiyalar semantikasi

Lambda hisob - funksiyalarning eng abstrakt modeli, Alonzo Church tomonidan

1930-yillarda ishlab chiqilgan. Uchta asosiy tuzilma: (1) O‘zgaruvchi: x, y, z. (2)

Abstraktsiya (funksiya ta’rifi): λx. e (x parametrli funksiya, tanasi e). (3) Aplikatsiya

(funksiya qo‘llash): e₁ e₂.

Beta-redutsiya (β-redutsiya) - funksiyani qo‘llash: (λx. e) v →_β e[x := v], bu

yerda e[x := v] - e da x ni v bilan almashtirish. Misol: (λx. x + 1) 5 →_β 5 + 1 = 6.

Beta-redutsiya hisoblashning asosiy qadami.

Alpha-konversiya (α-konversiya) - o‘zgaruvchilarni qayta nomlash: λx. e ≡_α λy.

e[x := y] (agar y e da erkin emas). Bu "bound variables" ni o‘zgartirish. Masalan: λx.

x ≡_α λy. y (har ikkalasi ham identifikatsiya). Alpha-konversiya name capture

muammosini oldini oladi.

Eta-konversiya (η-konversiya) - funksiya ekstensionalligi: λx. f x ≡_η f (agar x f

da erkin emas). Bu demak, funksiya faqat o‘z argumentini boshqa funksiyaga uzatsa,

ular ekvivalent. Eta-redutsiya "useless lambda" ni olib tashlaydi.

Church numeralları: natural sonlarni funksiyalar orqali ifodalash. 0 = λf. λx. x, 1

= λf. λx. f x, 2 = λf. λx. f (f x), n = λf. λx. f^n x. Qo‘shish: plus = λm. λn. λf. λx. m f (n

f x). Ko‘paytirish: mult = λm. λn. λf. m (n f). Bu lambda hisobning Turing-to‘liq

ekanligini ko‘rsatadi.

Y-kombinator (fixed-point kombinator): Y = λf. (λx. f (x x)) (λx. f (x x)). Xossa:

Y f = f (Y f). Bu rekursiyani lambda hisobda ifodalash imkonini beradi. Masalan,

faktorial: fact = Y (λf. λn. if n == 0 then 1 else n * f (n-1)).

Call-by-value vs call-by-name: CBV - argumentlar avval baholanadi, keyin

funksiya. CBN - argumentlar kerak bo‘lganda baholanadi (lazy). Haskell - CBN

(aniqrog‘i, call-by-need, ya’ni memoization bilan). Ko‘pchilik boshqa tillar - CBV.

CBN cheksiz strukturalar (infinite lists) imkonini beradi.

Denotational semantika - programmalarni matematik ob’ektlarga akslantirish.

Lambda ifoda - funksiya (matematikada). Operational semantika - programmaning

qanday bajarilishini tavsiflash (reduction steps). Axiomatic semantika -

programmaning xususiyatlarini mantiqiy aksiomalarda ifodalash (Hoare logic).

Rekursiya va induktiv ta’riflar

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 105

Rekursiya - funksiyaning o‘zini chaqirishi. Matematik induкtsiya bilan bog‘liq:

(1) Baza holati: f(0) = ... (2) Induktiv qadam: f(n+1) = ... f(n) ... Misol: faktorial fakt(0)

= 1, fakt(n+1) = (n+1) * fakt(n).

Strukturaviy rekursiya - ma’lumot strukturasi bo‘yicha rekursiya. Ro‘yxatlar

uchun: sum [] = 0 (bo‘sh ro‘yxat), sum (x:xs) = x + sum xs (bosh va quyruq). Daraxtlar

uchun: depth Leaf = 0, depth (Node l r) = 1 + max (depth l) (depth r).

Primitive rekursiya - rekursiya faqat strukturaning "kichikroq" qismlarida.

Umumiy rekursiya - ixtiyoriy, masalan, Ackermann funksiyasi. Primitive rekursiya har

doim to‘xtaydi (terminating), umumiy rekursiya esa yo‘q. Totality checker (Agda, Idris)

funksiyaning termination’ini tekshiradi.

Corecursiya (dual to recursiya) - cheksiz strukturalarni yaratish. Masalan, cheksiz

ro‘yxat: ones = 1 : ones (cheksiz birlar). fibonacci = 0 : 1 : zipWith (+) fibonacci (tail

fibonacci). Corecursiya lazy evaluation bilan birga ishlaydi.

Mutual rekursiya - ikki yoki ko‘proq funksiyalar bir-birini chaqiradi. Misol: even

0 = True, even n = odd (n-1); odd 0 = False, odd n = even (n-1). Mutual rekursiya

ba’zan tabiiy modellashtirish beradi.

Tail rekursiya - rekursiv chaqiruv funksiyaning oxirgi operatsiyasi. Tail call

optimization (TCO) tail rekursiyani loopga aylantiradi (stack overflow’ni oldini oladi).

Misol: fakt_tail n acc = if n == 0 then acc else fakt_tail (n-1) (n * acc). Ko‘plab

functional tillar TCO qo‘llab-quvvatlaydi.

Well-founded rekursiya - rekursiya "kamayuvchi" o‘lchov bo‘yicha. Har bir

chaqiruvda o‘lchov kamayadi va minimal element mavjud (yo‘q cheksiz tushlishlar).

Misol: Euclidean algoritmi gcd(a, b) = gcd(b, a mod b) - ikkinchi argument kamayadi.

Catamorphism (fold) - rekursiyaning umumiy sxemasi. Ro‘yxatlar uchun: foldr f

z [x₁, x₂, ..., xₙ] = f x₁ (f x₂ (... (f xₙ z))). Catamorphism istalgan algebraik ma’lumot

strukturasi uchun umumlashtirilishi mumkin. Anamorphism (unfold) - dual, yaratish

jarayoni. Hylomorphism - catamorphism ∘ anamorphism.

Lazy evaluation va thunk’lar

Lazy evaluation (kechiktirilgan baholash) - ifodalar kerak bo‘lganda baholanadi.

Qat’iy baholash (strict/eager) - darhol baholash. Haskell - lazy, ko‘pchilik boshqa tillar

- strict. Lazy evaluation afzalliklari: (1) Cheksiz strukturalar. (2) Faqat kerakli

hisoblashlar. (3) Modulyarlik - producer va consumer ajratiladi.

Thunk - kechiktirilgan hisoblash uchun "o‘ralgan" ifoda. Qo‘lda: data Thunk a =

Thunk (() -> a). force (Thunk f) = f (). Haskell da avtomatik. Memoization - bir marta

hisoblangandan keyin natija saqlanadi (sharing). Bu lazy evaluation ning muhim jihati.

WHNF (Weak Head Normal Form) - ifoda bosh pozitsiyada lambda yoki

constructor. Misol: Just (1 + 1) - WHNF (Just constructor), lekin (1 + 1) hali

baholanmagan. seq funksiyasi - WHNF gacha baholash: seq a b - a ni WHNF ga

keltiradi, keyin b qaytaradi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 106

Strictness anotatsiyalari (!): Haskell da strictness belgilash imkoniyati. data Pair

a b = Pair !a !b - strict pair, qiymatlar darhol baholanadi. BangPatterns extension: f !x

= ... x ni strict qiladi. Bu performance uchun muhim.

Lazy evaluation kamchiliklari: (1) Space leaks - thunk’lar to‘planib xotira to‘lishi.

(2) Predicting performance qiyin - qachon nima baholanishini bilish. (3) Debugging

murakkabroq - stek trace’lari chalkash. (4) Strict ma’lumotlar (masalan, Int) uchun

overhead.

Stream processing - lazy evaluation ning kuchli qo‘llanmasi. Producer -

ma’lumotlarni yaratadi (cheksiz ham bo‘lishi mumkin). Consumer - ma’lumotlarni

qayta ishlaydi. Pipe - kompozitsiya. Fusion optimization - oraliq strukturalarni olib

tashlash: map f . map g = map (f . g).

Short-circuit evaluation - mantiqiy operatorlarda lazy evaluation. (&&) va (||):

False && x = False (x baholanmaydi), True || x = True. Bu if-then-else semantikasini

beradi va exception’larni boshqaradi: if p then x else y ≡ (p && x) || y (taqriban).

Parallel va concurrent funksiyalar

Parallelizm - bir vaqtning o‘zida bir nechta hisoblashlar. Concurrency - bir nechta

hisoblashlar interleave qilinadi (vaqt bo‘yicha). Parallelizm - performance uchun,

concurrency - strukturaning bir qismi (masalan, server).

Pure parallelizm - side effects yo‘q, faqat tezlashtirish. Haskell da par va pseq

primitives: par a b - a ni parallel baholash, pseq a b - a keyin b. Strategies kutubxonasi:

parMap, parList va boshqalar. Purity parallelizmni osonlashtiradi - determinizm

kafolati.

Futures/Promises - asinxron hisoblash natijalari. Future a - kelajakda a tipidagi

qiymat. await operatori - future’ni kutish. async funksiyasi - asinxron hisoblashni

boshlash. Many tillar qo‘llab-quvvatlaydi: Scala Futures, JavaScript Promises, Python

asyncio.

Actors model - concurrency uchun. Actor - xabarlarni qabul qiluvchi ob’ekt.

Xabarlar asynchronous yuboriladi. Har bir actor alohida holat va xatti-harakatga ega.

Erlang, Akka (Scala), actor-based tillar. Actors distributed computing uchun yaxshi

model.

Software Transactional Memory (STM) - concurrency uchun. Transaksiyalar -

atomik operatsiyalar bloki. Agar konflikt bo‘lsa, transaksiya qayta bajariladi (retry).

Database transactions ga o‘xshash, lekin xotirada. Haskell STM, Clojure atoms/refs.

Composable concurrency - monadik interface.

Data parallelizm - ma’lumotlar strukturasi bo‘yicha parallellashtirish. Masalan,

parallel map: har bir element mustaqil qayta ishlanadi. GPU programming - SIMD

(Single Instruction Multiple Data). CUDA, OpenCL. Data parallelizm embarrassingly

parallel masalalar uchun ideal.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 107

MapReduce - katta hajmdagi ma’lumotlarni parallel qayta ishlash. Map bosqichi

- ma’lumotlarni transformatsiya (parallel). Reduce bosqichi - natijalarni agregatsiya

(gomomorfizm kerak). Google MapReduce, Hadoop. Functional programming

paradigmasi asosida.

Race conditions va deadlocks - concurrency muammolari. Race condition - natija

operatsiyalar tartibiga bog‘liq. Deadlock - ikki yoki ko‘proq processlar bir-birini kutadi.

Formal verification usullari - model checking, temporal logic. Type systems ba’zan

data race’larni oldini oladi (Rust ownership system).

Xulosa

Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning tahlili va matematik

tavsifi chuqur va ko‘p qirrali tadqiqot natijasida quyidagi fundamental xulosalarga

kelamiz.

Funksiyalarning formal matematik tavsifi dasturlashda abstraksiyaning asosini

tashkil etadi. Domen, kodomen, injektivlik, surektivlik, bijektivlik tushunchalari

funksiyaning fundamental xususiyatlarini tavsiflaydi. Kompozitsiya va identifikatsiya

funksiyalari murakkab operatsiyalarni sodda operatsiyalardan qurish imkonini beradi.

Funksiyalarning grafik tavsifi, ekstensional va intensional tenglik matematik rigorlikni

ta’minlaydi.

Yuqori tartibli funksiyalar funksional dasturlashning markaziy g‘oyasi bo‘lib,

abstraktsiya darajasini sezilarli oshiradi. Map, filter, fold kabi klassik funksiyalar

universal abstraktsiyalardir va deyarli barcha dasturlash tillarida mavjud. Currying va

partial application funksiyalarni moslashtirilsh va qayta ishlatish imkoniyatlarini

kengaytiradi. Point-free style va funksional pipeline kod o‘qilishini yaxshilaydi.

Chiziqlilik va gomomorfizm matematik strukturalarni saqlash xususiyatini

ifodalaydi. Gomomorfizmlar parallel hisoblashni osonlashtiradi va MapReduce

paradigmasining asosida yotadi. Algebraik strukturalar (guruh, halqa, maydon) va ular

orasidagi gomomorfizmlar funksiyalarning chuqur xususiyatlarini ochib beradi.

Izomorfizm matematik ekvivalentlikni bildiradi.

Kategoriyalar nazariyasi funksiyalarni eng umumiy darajada o‘rganish uchun

kuchli matematik apparatni taqdim etadi. Funktorlar strukturani saqlovchi

xaritalashlardir va ko‘plab dasturlash abstraktsiyalarini (List, Maybe, IO) yagona

printsipda birlashtiriladi. Natural transformatsiyalar funktorlar orasidagi "uniform"

xaritalashlardir va funksiyalar kompozitsiyasining to‘g‘riligini ta’minlaydi.

Monadlar hisoblash kontekstini ifodalash uchun kuchli abstraktsiya hisoblanadi.

Ular side effects’larni, xatolarni, holatni, noaniqlikni va boshqa murakkab hisoblash

kontekstlarini funksional paradigmada boshqarish imkonini beradi. Monad qonunlari

(assotsiativlik va identifikatsiya) hisoblashlarning kompozitsiya qobiliyatini

kafolatlaydi. Do-notation monadik hisoblashlarni oddiy va o‘qiladigan qiladi.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 108

Tip sistemalari funksiyalarning xavfsizligini ta’minlash va xatolarni erta aniqlash

uchun muhim vositadir. Oddiy tiplar, polimorfizm (parametrik va ad-hoc), dependent

types kabi tushunchalar turli darajadagi xavfsizlik va ifodalilikni ta’minlaydi.

Algebraic Data Types va pattern matching kuchli abstraktsiya va xavfsiz

manipulyatsiya imkonini beradi. Tip inference programmistlarni ortiqcha

annotatsiyalardan ozod qiladi.

Lambda hisob funksiyalarning eng abstrakt va fundamental modeli bo‘lib,

hisoblashning asosiy tamoyillarini ifodalaydi. Beta, alpha va eta konversiyalar

funksiyalarning formal semantikasini belgilaydi. Church numerallari va Y-kombinator

lambda hisobning ekspressivligini ko‘rsatadi. Curry-Howard izomorfizmi mantiq va

dasturlash o‘rtasidagi chuqur bog‘liqlikni ochib beradi.

Rekursiya va induktiv ta’riflar funksiyalarni ta’riflashning tabiiy usuli hisoblanadi.

Strukturaviy rekursiya, primitive rekursiya, umumiy rekursiya turli kuchga ega.

Corecursiya cheksiz strukturalar bilan ishlash imkonini beradi. Catamorphism va

anamorphism rekursiyaning umumiy sxemalarini taqdim etadi. Well-founded

rekursiya termination’ni kafolatlaydi.

Lazy evaluation hisoblashlarni kechiktirish va cheksiz strukturalar bilan ishlash

imkonini beradi. Thunk’lar va memoization lazy evaluation’ning asosiy

mexanizmlaridir. Strictness anotatsiyalari performance uchun muhim. Fusion

optimization oraliq strukturalarni olib tashlashga yordam beradi. Lazy evaluation

modulyarlik va kompozitsiya qobiliyatini oshiradi.

Parallel va concurrent funksiyalar zamonaviy multicore arxitekturalardan

foydalanish uchun zarur. Pure parallelizm determinizm kafolatini beradi. Futures,

actors, STM kabi abstraktsiyalar turli concurrency stsenariylari uchun mos.

MapReduce katta hajmdagi ma’lumotlarni parallel qayta ishlashning samarali

paradigmasidir. Formal verification race conditions va deadlock’larni oldini olishga

yordam beradi.

Umumiy xulosa: massiv funksiyalarining matematik tahlili va tuzilishi chuqur

nazariy asoslarga ega bo‘lib, zamonaviy dasturlash amaliyotida muhim rol o‘ynaydi.

Kategoriyalar nazariyasi, tip sistemalari, lambda hisob va funksional paradigma

birgalikda kuchli va xavfsiz abstraktsiyalarni yaratish imkonini beradi. Bu bilimlar

nafaqat nazariy jihatdan qiziqarli, balki amaliy dasturlashda samarali, to‘g‘ri va

maintainable kod yozish uchun zarurdir.

Foydalanilgan adabiyotlar

1. Pierce B.C. Types and Programming Languages. MIT Press, 2002. 623 p.

2. Mac Lane S. Categories for the Working Mathematician, 2nd Edition. Springer,

1998. 314 p.

3. Bird R., de Moor O. Algebra of Programming. Prentice Hall, 1997. 312 p.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 109

4. Awodey S. Category Theory, 2nd Edition. Oxford University Press, 2010. 311

p.

5. Barendregt H.P. The Lambda Calculus: Its Syntax and Semantics. North

Holland, 1984. 621 p.

6. Wadler P. Theorems for free! // Functional Programming Languages and

Computer Architecture. 1989. P. 347-359.

7. Moggi E. Notions of computation and monads // Information and Computation.

1991. Vol. 93. No. 1. P. 55-92.

8. Milner R. A Theory of Type Polymorphism in Programming // Journal of

Computer and System Sciences. 1978. Vol. 17. No. 3. P. 348-375.

9. Hinze R., Jeuring J. Generic Haskell: Practice and Theory // Summer School

on Generic Programming. Springer, 2003. P. 1-56.

10. Gibbons J. Calculating Functional Programs // Algebraic and Coalgebraic

Methods in the Mathematics of Program Construction. Springer, 2002. P. 148-203.

11. Hutton G. Programming in Haskell, 2nd Edition. Cambridge University Press,

2016. 322 p.

12. Lipovača M. Learn You a Haskell for Great Good! No Starch Press, 2011. 400

p.

13. Meijer E., Fokkinga M., Paterson R. Functional Programming with Bananas,

Lenses, Envelopes and Barbed Wire // Functional Programming Languages and

Computer Architecture. 1991. P. 124-144.

14. Wadler P. Monads for functional programming // Advanced Functional

Programming. Springer, 1995. P. 24-52.

15. Bird R. Introduction to Functional Programming using Haskell, 2nd Edition.

Prentice Hall, 1998. 444 p.

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 110

