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Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlarda belgilangan 

funksiyalarning chuqur tahlili va ularning matematik tuzilishi tadqiq qilingan. Massiv 

funksiyalarining formal matematik tavsifi, algebraik xususiyatlari, funksional 

kompozitsiya va hisoblash murakkabligi to‘liq o‘rganilgan. Tadqiqotda 

funksiyalarning domenlar va ko‘domenlar, injektivlik va surektivlik xususiyatlari, 

chiziqlilik va gomomorfizm tushunchalari tahlil qilingan. Maqolada funksiyalarning 

kategorik tavsifi, funktorlar va natural transformatsiyalar, monadik strukturalar va 

ularning massiv operatsiyalaridagi roli batafsil ko‘rib chiqilgan. Massiv 

funksiyalarining tiplash tizimlari, polimorfizm va generiklik, lambda hisob va 

funksional dasturlash paradigmasi bilan bog‘liqligi o‘rganilgan. Tadqiqot natijalari 

zamonaviy dasturlash tillarida massiv funksiyalarini to‘g‘ri loyihalash, samarali 

amalga oshirish va formal verifikatsiya qilish uchun nazariy asos yaratadi. 

Kalit so‘zlar: massiv funksiyalari tahlili, matematik tuzilish, funksional 

dasturlash, kategoriyalar nazariyasi, tip sistemalari, funktorlar, monadlar, 

gomomorfizm, kompozitsiya, polimorfizm, lambda hisob, formal tavsif, algebraik 

strukturalar 

 

Analysis of Functions Defined on Multidimensional Arrays 

and Their Mathematical Structural Description 

 

Gulbodom Oybek qizi Norqulova 

BIU 

 

Abstract: This article presents an in-depth analysis of functions defined on 

multidimensional arrays and their mathematical structural properties. The formal 

mathematical characterization of array functions, their algebraic features, functional 

composition, and computational complexity are thoroughly examined. The study 

analyzes domains and codomains of functions, injectivity and surjectivity, linearity, 

and the concept of homomorphism. The paper provides a detailed discussion of the 

categorical description of functions, functors and natural transformations, monadic 

structures, and their role in array operations. The type systems of array functions, 

polymorphism and genericity, as well as their relationship with lambda calculus and 
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the functional programming paradigm, are explored. The results offer a theoretical 

foundation for the correct design, efficient implementation, and formal verification of 

array functions in modern programming languages. 
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Kirish 

Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning matematik tahlili va 

tuzilishini o‘rganish zamonaviy hisoblash matematikasi va dasturlash nazariyasining 

muhim yo‘nalishi hisoblanadi. Funksiyalar - dasturlashning asosiy abstraktsiyasi bo‘lib, 

ular ma’lumotlarni transformatsiya qilish, hisoblashlarni tashkil etish va murakkab 

tizimlarni qurish uchun zarur vositadir. 

Massiv funksiyalari oddiy matematik funksiyalardan murakkabligida farq qiladi, 

chunki ular ko‘p o‘lchovli strukturalar ustida ishlaydi, turli xil operatsiyalarni qo‘llab-

quvvatlaydi va hisoblash samaradorligiga katta ta’sir ko‘rsatadi. Funksiyalarning 

matematik tavsifi ularning xususiyatlarini formal tarzda ifodalash, to‘g‘riligini 

isbotlash va optimallashtirish imkoniyatlarini aniqlash uchun zarur. 

Funksiyalarning tuzilishi bir necha darajada tahlil qilinishi mumkin. Sintaktik 

daraja funksiyaning ta’rif va ishlatilish sintaksisini tavsiflaydi. Semantik daraja 

funksiyaning ma’nosini, ya’ni u qanday hisoblashni bajarishini ifodalaydi. Pragmatik 

daraja funksiyaning amaliy xususiyatlarini - samaradorlik, xotira sarfi, 

parallellashtirish imkoniyatlarini o‘z ichiga oladi. 

Kategoriyalar nazariyasi funksiyalarni umumiy va abstrakt darajada o‘rganish 

uchun kuchli matematik apparatni taqdim etadi. Funktorlar, natural transformatsiyalar, 

monadlar kabi tushunchalar murakkab funksional strukturalarni tavsiflash va 

tizimlashtirish imkonini beradi. Bu yondashuv zamonaviy funksional dasturlash 

tillarida (Haskell, Scala, F#) keng qo‘llaniladi. 

Tip sistemalari funksiyalarning xavfsizligini ta’minlash va xatolarni 

kompilyatsiya vaqtida aniqlash uchun muhim. Polimorfizm va generiklik umumiy 

funksiyalar yozish imkonini beradi. Parametrik polimorfizm tiplardan mustaqil ishlash, 

ad-hoc polimorfizm esa overloading va type classes orqali turli tiplar uchun maxsus 

realizatsiyalar yaratish imkonini beradi. 

Lambda hisob funksiyalarning eng abstrakt matematik modeli bo‘lib, 

hisoblashning asosiy tamoyillarini ifodalaydi. Church-Turing tezisi lambda hisobning 

Turing mashinalari bilan ekvivalentligini ta’kidlaydi. Curry-Howard izomorfizmi 

mantiq va tiplar nazariyasi o‘rtasidagi chuqur bog‘liqlikni ko‘rsatadi: isbotlar 

dasturlarga, formulalar esa tiplarga mos keladi. 

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 99



Tadqiqotning maqsadi ko‘p o‘lchovli massiv funksiyalarining to‘liq matematik 

tahlilini amalga oshirish, ularning tuzilishini formal tavsiflash, xususiyatlarini 

sistemalashtirish va zamonavir dasturlash amaliyotiga nazariy asos yaratishdan iborat. 

Tadqiqot ob’ekti sifatida turli toifadagi massiv funksiyalari, ularning algebraik va 

kategorik xususiyatlari, tip sistemalari va formal semantika tanlab olingan. 

Asosiy qism 

Funksiyalarning formal matematik tavsifi 

Funksiya matematikada ikkita to‘plam orasidagi xaritalash sifatida aniqlanadi. 

Formal ta’rif: funksiya f: A → B - bu to‘plamlar A (domen) dan B (kodomen) ga 

xaritalash bo‘lib, har bir a ∈ A uchun yagona b ∈ B mavjud bo‘lib, f(a) = b. Bu ta’rif 

funksiyaning aniqlanganligini (har bir kirish uchun natija mavjud) va determinizimini 

(bir kirish uchun faqat bitta natija) kafolatlaydi. 

Massiv funksiyalari umumiy shaklda f: Array[T₁] → Array[T₂] yoki ko‘p 

parametrli: f: Array[T₁] × Array[T₂] × ... → Array[T_out] ko‘rinishda yoziladi. Bu 

yerda Array[T] - T tipidagi elementlardan tashkil topgan massivlar to‘plami. Masalan, 

map funksiyasi: map: (T₁ → T₂) × Array[T₁] → Array[T₂] - birinchi argument funksiya, 

ikkinchisi massiv. 

Qisman qo‘llaniladigan funksiyalar (partial functions) ba’zi kirish qiymatlarida 

aniqlanmagan bo‘lishi mumkin. Masalan, division funksiyasi div: ℝ × ℝ → ℝ ikkinchi 

argument 0 bo‘lganda aniqlanmagan. To‘liq funksiyalar (total functions) barcha kirish 

qiymatlari uchun aniqlangan. Dasturlashda qisman funksiyalar exception yoki 

Option/Maybe tiplari orqali boshqariladi. 

Funksiyaning grafigi Γ(f) = {(a, f(a)) : a ∈ A} ⊆ A × B to‘plami funksiyani to‘liq 

tavsiflaydi. Ikki funksiya f va g teng (f = g), agar ularning domenlari bir xil va barcha 

a uchun f(a) = g(a) bo‘lsa. Bu ekstensional tenglik deyiladi (natijalar bo‘yicha). 

Intensional tenglik ta’riflar bo‘yicha tenglikni bildiradi. 

Funksiya kompozitsiyasi murakkab operatsiyalarni oddiy operatsiyalardan qurish 

imkonini beradi. Agar f: A → B va g: B → C bo‘lsa, kompozitsiya g ∘ f: A → C 

quyidagicha: (g ∘ f)(a) = g(f(a)). Kompozitsiya assotsiativ: h ∘ (g ∘ f) = (h ∘ g) ∘ f, lekin 

kommutativ emas: g ∘ f ≠ f ∘ g (umuman). 

Identifikatsiya funksiyasi id_A: A → A har bir elementni o‘ziga akslantiradi: 

id_A(a) = a. Bu kompozitsiyaning neytral elementi: f ∘ id_A = f va id_B ∘ f = f. Har 

bir to‘plam uchun yagona identifikatsiya funksiyasi mavjud. 

Injektivlik, surektivlik va bijektivlik 

Funksiyaning muhim xususiyatlari uning elementlarni qanday akslantirishi bilan 

bog‘liq. Injektiv funksiya (in’ektsiya, bir-birlikli) f: A → B - turli elementlar turli 

qiymatlarga akslanadi: a₁ ≠ a₂ ⇒ f(a₁) ≠ f(a₂). Ekvivalent: f(a₁) = f(a₂) ⇒ a₁ = a₂. 

Injektivlik funksiyaning "ma’lumotni yo‘qotmasligi"ni bildiradi. 
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Surektiv funksiya (sur’ektsiya, ustiga) f: A → B - har bir b ∈ B uchun kamida 

bitta a ∈ A mavjud bo‘lib, f(a) = b. Ya’ni, kodomenning barcha elementlari "erishiladi". 

Formal: ∀b ∈ B, ∃a ∈ A: f(a) = b. Surektivlik funksiyaning "to‘liq qoplamini" bildiradi. 

Bijektiv funksiya (bijektsiya, o‘zaro bir qiymatli moslik) ham injektiv, ham 

surektiv. Bijektiv funksiya A va B to‘plamlar o‘rtasida "mukammal moslik" o‘rnatadi. 

Har bir bijektiv funksiya uchun teskari funksiya f⁻¹: B → A mavjud bo‘lib, f⁻¹(f(a)) = 

a va f(f⁻¹(b)) = b. Teskari funksiya ham bijektiv. 

Massiv funksiyalari kontekstida: map funksiyasi injektiv emas (turli massivlar bir 

xil natijaga olib kelishi mumkin). filter funksiyasi surektiv emas (barcha mumkin 

massivlar hosil qilinmaydi). reverse funksiyasi bijektiv (har bir massivning yagona 

teskari tartibi bor va barcha tartiblar erishiladi). 

Kardinallık (to‘plam quvvati) bilan bog‘liqlik: Agar f: A → B injektiv bo‘lsa, |A| 

≤ |B|. Agar surektiv bo‘lsa, |A| ≥ |B|. Agar bijektiv bo‘lsa, |A| = |B|. Cantor teoremasi: 

har qanday to‘plam A uchun |A| < |𝒫(A)| (quvvat to‘plami kattaroq). Bu cheksiz 

to‘plamlar ierarxiyasini yaratadi. 

Teskari tasvir (preimage) f⁻¹(B’) = {a ∈ A : f(a) ∈ B’} - funksiya natijasi B’ ga 

tegishli barcha elementlar. Teskari tasvir har doim to‘plam qaytaradi (funksiya injektiv 

bo‘lmasa ham). Xususiyatlar: f⁻¹(B₁ ∪ B₂) = f⁻¹(B₁) ∪ f⁻¹(B₂), f⁻¹(B₁ ∩ B₂) = f⁻¹(B₁) ∩ 

f⁻¹(B₂). 

Yuqori tartibli funksiyalar va funksional abstraktsiya 

Yuqori tartibli funksiyalar (higher-order functions) boshqa funksiyalarni 

argument sifatida qabul qiladi yoki natija sifatida qaytaradi. Bu funksional 

dasturlashning asosiy tushunchasi bo‘lib, abstraktsiya darajasini oshiradi. 

Map funksiyasi klassik misoldir: map: (a → b) → [a] → [b], bu yerda [a] - a 

tipidagi elementlar ro‘yxati. Map har bir element uchun berilgan funksiyani qo‘llaydi: 

map f [x₁, x₂, ..., xₙ] = [f(x₁), f(x₂), ..., f(xₙ)]. Map funktorning funksional ekvivalenti. 

Filter funksiyasi shartga mos elementlarni tanlaydi: filter: (a → Bool) → [a] → 

[a]. filter p [x₁, x₂, ..., xₙ] = [xᵢ : p(xᵢ) = True]. Bu to‘plamlar nazariyasidagi {x ∈ A : 

P(x)} notation’iga mos keladi. 

Fold (reduce) funksiyasi massivni bitta qiymatga "yig‘adi": foldl: (b → a → b) → 

b → [a] → b. foldl f z [x₁, x₂, ..., xₙ] = f(... f(f(z, x₁), x₂) ..., xₙ). Bu iterativ jarayon. 

foldr o‘ngdan boshlaydi va lazy evaluation imkonini beradi. 

Funksiyalarni qaytarish (function returning): curry funksiyasi ko‘p parametrli 

funksiyani bir parametrli funksiyalar zanjiriga aylantiradi: curry: ((a, b) → c) → (a → 

(b → c)). Masalan, add: (Int, Int) → Int ni curry add: Int → (Int → Int) ga. Bu Currying 

deyiladi (Haskell Curry sharafiga). 

Kompozitsiya operatori (∘) ham yuqori tartibli funksiya: (∘): (b → c) → (a → b) 

→ (a → c). Bu funksiyalarni "ulash" imkonini beradi: (g ∘ f)(x) = g(f(x)). Point-free 
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style - argumentlarni ko‘rsatmasdan funksiyalarni ta’riflash: sumSquares = sum ∘ (map 

square). 

Funksional pipeline (|>) operatori chap-o‘ng tartibda yozish imkonini beradi: x |> 

f = f(x). Bu imperativ dasturlashga o‘xshash tartib yaratadi: data |> filter p |> map f |> 

sum. Ko‘plab zamonaviy tillarda (F#, Elixir, JavaScript) qo‘llab-quvvatlanadi. 

Partial application funksiyaning ba’zi argumentlarini "fiksatlash": let add5 = add 

5 in add5 3 = 8. Bu yangi, maxsuslashtizilgan funksiyalar yaratish imkonini beradi. 

Closure - funksiya o‘z muhitidagi o‘zgaruvchilarni "eslab qoladi": let makeAdder x = 

λy. x + y in let add5 = makeAdder 5. 

Chiziqlilik va gomomorfizm 

Chiziqli funksiya vektorli fazolar orasidagi xaritalash bo‘lib, ikki xossani 

qanoatlantiradi: f(x + y) = f(x) + f(y) (additivlik) va f(αx) = αf(x) (bir jinslіlik). 

Birlashtirilgan: f(αx + βy) = αf(x) + βf(y). Chiziqli funksiyalar chiziqli algebra va 

geometriyada asosiy rol o‘ynaydi. 

Massiv kontekstida, map chiziqli: map f (xs ++ ys) = map f xs ++ map f ys, bu 

yerda ++ - ro‘yxatlarni birlashtirish. Lekin map chiziqli operator emas (vektorli fazolar 

orasida emas), balki funktordir (kategoriyalar nazariyasida). 

Gomomorfizm - algebraik strukturani saqlovchi xaritalash. Agar (A, *) va (B, ·) 

- ikki guruh bo‘lsa, gomomorfizm f: A → B quyidagini qanoatlantiradi: f(a * b) = 

f(a) · f(b). Masalan, logarifm gomomorfizm: log(xy) = log(x) + log(y) (ko‘paytirish → 

qo‘shish). 

Izomorfizm - bijektiv gomomorfizm. Agar f: A → B izomorfizm bo‘lsa, teskari 

f⁻¹: B → A ham gomomorfizm. Izomorf strukturalar "matematik jihatdan bir xil" 

hisoblanadi. Masalan, (ℝ, +) va (ℝ⁺, ×) izomorf: f(x) = eˣ, f⁻¹(y) = ln(y). 

Endomorfizm - gomomorfizm A → A (bir xil to‘plamga). Avtomorfizm - bijektiv 

endomorfizm. Masalan, matritsa transpozitsiyasi M_{m×n} → M_{n×m} 

gomomorfizm, lekin endomorfizm faqat kvadrat matritsalar uchun (n = m). 

List funksiyalari va gomomorfizm: map f funktor gomomorfizm: map f [] = [], 

map f (x:xs) = f(x) : map f xs. filter ham "qisman" gomomorfizm. concat: [[a]] → [a] 

monoid gomomorfizm: concat (xs ++ ys) = concat xs ++ concat ys. 

Amaliy ahamiyat: gomomorfizmlar parallel hisoblashni osonlashtiradi. Agar f 

gomomorfizm bo‘lsa, f(a * b) = f(a) · f(b), u holda f(a) va f(b) parallel hisoblanishi 

mumkin. Map-reduce paradigmasi shu prinsipga asoslangan: map bosqichi parallel, 

reduce gomomorfizm bo‘lsa, u ham parallellashtirish mumkin. 

Kategoriyalar nazariyasi va funktorlar 

Kategoriya C - ob’ektlar to‘plami va ular orasidagi morfizmlar (o‘qlar) majmuasi 

bo‘lib, quyidagi aksiomalarga bo‘ysinadi: (1) Har bir ob’ekt A uchun identifikatsiya 

morfizmi id_A: A → A mavjud. (2) Morfizmlar kompozitsiyalanishi mumkin: agar f: 
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A → B va g: B → C bo‘lsa, g ∘ f: A → C. (3) Kompozitsiya assotsiativ: h ∘ (g ∘ f) = 

(h ∘ g) ∘ f. (4) Identifikatsiya neytral element: f ∘ id_A = f, id_B ∘ f = f. 

Misollar: Set kategoriyasi - ob’ektlar to‘plamlar, morfizmlar funksiyalar. Vect 

kategoriyasi - ob’ektlar vektorli fazolar, morfizmlar chiziqli operatorlar. Grp 

kategoriyasi - ob’ektlar guruhlar, morfizmalar gomomorfizmlar. Hask kategoriyasi - 

ob’ektlar Haskell tiplari, morfizmlar funksiyalar (taqriban). 

Funktor F: C → D - ikki kategoriya orasidagi "strukturani saqlovchi" xaritalash. 

Funktor ob’ektlarni ob’ektlarga va morfizmlarni morfizmlarga akslantiradi: F(A) - D 

dagi ob’ekt, F(f: A → B) = F(f): F(A) → F(B) - D dagi morfizm. Shartlar: (1) F(id_A) 

= id_{F(A)}. (2) F(g ∘ f) = F(g) ∘ F(f) (kompozitsiya saqlanadi). 

List funktori: List: Hask → Hask. Ob’ektlarga: List(A) = [A]. Morfizmlarga: 

List(f) = map f. Tekshirish: map id = id (birinchi qonun), map (g ∘ f) = map g ∘ map f 

(ikkinchi qonun). List - endofunktor (bir kategoriyada). 

Maybe funktori: Maybe(A) = Just A | Nothing. fmap: (a → b) → Maybe a → 

Maybe b. fmap f (Just x) = Just (f x), fmap f Nothing = Nothing. Bu qisman 

funksiyalarni to‘liq funksiyalarga "lift" qilish imkonini beradi. 

Funktorlarning kompozitsiyasi ham funktor: agar F: C → D va G: D → E 

funktorlar bo‘lsa, G ∘ F: C → E ham funktor. Identifikatsiya funktor Id: C → C 

ob’ektlar va morfizmlarni o‘zgartirsiz qoldiradi. Funktorlar o‘zlari kategoriya tashkil 

etadi: ob’ektlar - funktorlar, morfizmlar - natural transformatsiyalar. 

Kontravariant funktor teskari yo‘nalish morfizmlarni akslantiradi: F(f: A → B): 

F(B) → F(A). Masalan, Hom funktor: Hom(-, A): C^op → Set (C^op - teskari 

kategoriya). Kovariant funktor oddiy yo‘nalish: F(f: A → B): F(A) → F(B). Odatda 

"funktor" deganda kovariant nazarda tutiladi. 

Natural transformatsiyalar va funktorlar orasidagi morfizmlar 

Natural transformatsiya α: F ⇒ G - ikki funktor F, G: C → D orasidagi "uniform" 

xaritalash. Har bir C dagi ob’ekt A uchun D dagi morfizm α_A: F(A) → G(A) mavjud 

bo‘lib, naturality sharti bajariladi: har bir f: A → B morfizm uchun G(f) ∘ α_A = α_B 

∘ F(f) (kommutativ kvadrat). 

Misol: reverse: List ⇒ List. Har bir tip A uchun reverse_A: [A] → [A]. Naturality: 

reverse ∘ map f = map f ∘ reverse. Bu shuni bildiriki, map f ni oldin yoki keyin qo‘llash 

natija bir xil. 

Monad - maxsus struktura funktorlar bilan: monad T kategoriya C da uchta 

komponentdan iborat: (1) Endofunktor T: C → C. (2) Natural transformatsiya η: Id ⇒ 

T (unit yoki return). (3) Natural transformatsiya μ: T ∘ T ⇒ T (join yoki flatten). 

Shartlar (monad qonunlari): μ ∘ T(μ) = μ ∘ μ(T) (assotsiativlik), μ ∘ T(η) = μ ∘ η(T) = 

id (identifikatsiya). 
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List monad: T = List, η(x) = [x] (singleton), μ = concat. Maybe monad: T = Maybe, 

η(x) = Just x, μ(Just (Just x)) = Just x, μ_ = Nothing (boshqa hollarda). State monad, 

IO monad, Reader monad - dasturlashda keng qo‘llaniladigan monadlar. 

Monad va hisoblash: monad "hisoblash konteksti"ni ifodalaydi. Maybe - 

muvaffaqiyatsizlik mumkinligi, List - noaniqlik (ko‘p natija), IO - I/O effektlar, State 

- holat o‘zgarishi. Bind operatori (>>=): m >>= f = μ(T(f)(m)) hisoblashlarni ketma-

ket bog‘lash imkonini beradi. 

Do-notation (Haskell) monadik hisoblashlarni imperativ ko‘rinishda yozish 

sintaktik shakar: do {x ← m; f x} ≡ m >>= f. Bu monоdlarni oddiy kod sifatida ishlatish 

imkonini beradi, lekin qat’iy matematik semantikaga ega. 

Monadlarning amaliy ahamiyati: (1) Side effects’larni boshqarish (IO monad). (2) 

Xatolarni boshqarish (Maybe, Either monad). (3) Holatni boshqarish (State monad). (4) 

Noaniqlikni ifodalash (List monad). (5) Dependency injection (Reader monad). 

Monadlar "programmable semicolon" - hisoblashlar orasidagi o‘tishni dasturlash 

imkoniyati. 

Tip sistemalari va polimorfizm 

Tip sistemi - dasturlash tilining statik tahlil qismi bo‘lib, programmadagi ifodalar 

tiplitini tekshiradi va tiр xatolarini kompilyatsiya vaqtida aniqlaydi. Maqsad: runtime 

xatolarini kamaytirish, programmaning to‘g‘riligini ta’minlash. 

Oddiy tiр sistemasi (Simply Typed Lambda Calculus): bazis tiplari (Int, Bool) va 

funksiya tiplari (A → B). Tip qoidalari: (1) Har bir o‘zgaruvchi tipga ega. (2) Agar f: 

A → B va x: A bo‘lsa, f(x): B. (3) Agar x: A ⊢ e: B bo‘lsa (x tipida A kontekstda e 

tipida B), λx. e: A → B. 

Polimorfizm - umumiy kod yozish imkoniyati. Parametrik polimorfizm (generics): 

funksiya barcha tiplar uchun bir xil ishlaydi. Misol: identity: ∀a. a → a, id x = x. 

Haskell da: id :: a -> a. Java da: <T> T identity(T x). Parametrik polimorfizm "free 

theorems" beradi (Wadler): tip signaturasidan xatti-harakatni xulosa qilish. 

Ad-hoc polimorfizm - funksiya turli tiplar uchun turli amalga oshiriladi. 

Overloading: + operatori Int va Float uchun turlicha. Type classes (Haskell): class Eq 

a where (==) :: a -> a -> Bool. Instance: instance Eq Int where x == y = ... Typeclass 

polimorfizmdan kuchliroq: qo‘shimcha cheklovlar (constraints). 

Subtype polimorfizm (OOP): agar B A ning subtype’i bo‘lsa (B <: A), B tipidagi 

qiymat A tipida ishlatilishi mumkin. Liskov substitution prinsipi: subtype supertype’ni 

to‘liq almashtirishi kerak. Variance: covariance (B <: A ⇒ List[B] <: List[A]), 

contravariance, invariance. 

Dependent types - tiplar qiymatlarga bog‘liq bo‘lishi mumkin. Misol: Vector n a 

- uzunligi n bo‘lgan vektor. append: Vector n a -> Vector m a -> Vector (n+m) a. 

Dependent types juda kuchli: matematik isbotlarni kod sifatida ifodalash (Curry-

Howard isomorphism). Coq, Agda, Idris tillari dependent types qo‘llab-quvvatlaydi. 
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Algebraic Data Types (ADT): sum types (yoki tagged unions): data Maybe a = 

Just a | Nothing. Product types (tuples, records): (Int, String). ADT patterna matching 

bilan birga kuchli abstraktsiya yaratadi. GADTs (Generalized ADTs) yanada kuchliroq. 

Tip inference - tiplarni avtomatik aniqlash. Hindley-Milner algoritmi: let 

polimorfizmni qo‘llab-quvvatlaydi va to‘liq tip annotatsiyalarni talab qilmaydi. 

Haskell, OCaml, F# da ishlatiladi. Tip xatolari kompilyatsiya vaqtida aniqlanadi, bu 

runtime xatolarini kamaytiradi. 

Lambda hisob va funksiyalar semantikasi 

Lambda hisob - funksiyalarning eng abstrakt modeli, Alonzo Church tomonidan 

1930-yillarda ishlab chiqilgan. Uchta asosiy tuzilma: (1) O‘zgaruvchi: x, y, z. (2) 

Abstraktsiya (funksiya ta’rifi): λx. e (x parametrli funksiya, tanasi e). (3) Aplikatsiya 

(funksiya qo‘llash): e₁ e₂. 

Beta-redutsiya (β-redutsiya) - funksiyani qo‘llash: (λx. e) v →_β e[x := v], bu 

yerda e[x := v] - e da x ni v bilan almashtirish. Misol: (λx. x + 1) 5 →_β 5 + 1 = 6. 

Beta-redutsiya hisoblashning asosiy qadami. 

Alpha-konversiya (α-konversiya) - o‘zgaruvchilarni qayta nomlash: λx. e ≡_α λy. 

e[x := y] (agar y e da erkin emas). Bu "bound variables" ni o‘zgartirish. Masalan: λx. 

x ≡_α λy. y (har ikkalasi ham identifikatsiya). Alpha-konversiya name capture 

muammosini oldini oladi. 

Eta-konversiya (η-konversiya) - funksiya ekstensionalligi: λx. f x ≡_η f (agar x f 

da erkin emas). Bu demak, funksiya faqat o‘z argumentini boshqa funksiyaga uzatsa, 

ular ekvivalent. Eta-redutsiya "useless lambda" ni olib tashlaydi. 

Church numeralları: natural sonlarni funksiyalar orqali ifodalash. 0 = λf. λx. x, 1 

= λf. λx. f x, 2 = λf. λx. f (f x), n = λf. λx. f^n x. Qo‘shish: plus = λm. λn. λf. λx. m f (n 

f x). Ko‘paytirish: mult = λm. λn. λf. m (n f). Bu lambda hisobning Turing-to‘liq 

ekanligini ko‘rsatadi. 

Y-kombinator (fixed-point kombinator): Y = λf. (λx. f (x x)) (λx. f (x x)). Xossa: 

Y f = f (Y f). Bu rekursiyani lambda hisobda ifodalash imkonini beradi. Masalan, 

faktorial: fact = Y (λf. λn. if n == 0 then 1 else n * f (n-1)). 

Call-by-value vs call-by-name: CBV - argumentlar avval baholanadi, keyin 

funksiya. CBN - argumentlar kerak bo‘lganda baholanadi (lazy). Haskell - CBN 

(aniqrog‘i, call-by-need, ya’ni memoization bilan). Ko‘pchilik boshqa tillar - CBV. 

CBN cheksiz strukturalar (infinite lists) imkonini beradi. 

Denotational semantika - programmalarni matematik ob’ektlarga akslantirish. 

Lambda ifoda - funksiya (matematikada). Operational semantika - programmaning 

qanday bajarilishini tavsiflash (reduction steps). Axiomatic semantika - 

programmaning xususiyatlarini mantiqiy aksiomalarda ifodalash (Hoare logic). 

Rekursiya va induktiv ta’riflar 
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Rekursiya - funksiyaning o‘zini chaqirishi. Matematik induкtsiya bilan bog‘liq: 

(1) Baza holati: f(0) = ... (2) Induktiv qadam: f(n+1) = ... f(n) ... Misol: faktorial fakt(0) 

= 1, fakt(n+1) = (n+1) * fakt(n). 

Strukturaviy rekursiya - ma’lumot strukturasi bo‘yicha rekursiya. Ro‘yxatlar 

uchun: sum [] = 0 (bo‘sh ro‘yxat), sum (x:xs) = x + sum xs (bosh va quyruq). Daraxtlar 

uchun: depth Leaf = 0, depth (Node l r) = 1 + max (depth l) (depth r). 

Primitive rekursiya - rekursiya faqat strukturaning "kichikroq" qismlarida. 

Umumiy rekursiya - ixtiyoriy, masalan, Ackermann funksiyasi. Primitive rekursiya har 

doim to‘xtaydi (terminating), umumiy rekursiya esa yo‘q. Totality checker (Agda, Idris) 

funksiyaning termination’ini tekshiradi. 

Corecursiya (dual to recursiya) - cheksiz strukturalarni yaratish. Masalan, cheksiz 

ro‘yxat: ones = 1 : ones (cheksiz birlar). fibonacci = 0 : 1 : zipWith (+) fibonacci (tail 

fibonacci). Corecursiya lazy evaluation bilan birga ishlaydi. 

Mutual rekursiya - ikki yoki ko‘proq funksiyalar bir-birini chaqiradi. Misol: even 

0 = True, even n = odd (n-1); odd 0 = False, odd n = even (n-1). Mutual rekursiya 

ba’zan tabiiy modellashtirish beradi. 

Tail rekursiya - rekursiv chaqiruv funksiyaning oxirgi operatsiyasi. Tail call 

optimization (TCO) tail rekursiyani loopga aylantiradi (stack overflow’ni oldini oladi). 

Misol: fakt_tail n acc = if n == 0 then acc else fakt_tail (n-1) (n * acc). Ko‘plab 

functional tillar TCO qo‘llab-quvvatlaydi. 

Well-founded rekursiya - rekursiya "kamayuvchi" o‘lchov bo‘yicha. Har bir 

chaqiruvda o‘lchov kamayadi va minimal element mavjud (yo‘q cheksiz tushlishlar). 

Misol: Euclidean algoritmi gcd(a, b) = gcd(b, a mod b) - ikkinchi argument kamayadi. 

Catamorphism (fold) - rekursiyaning umumiy sxemasi. Ro‘yxatlar uchun: foldr f 

z [x₁, x₂, ..., xₙ] = f x₁ (f x₂ (... (f xₙ z))). Catamorphism istalgan algebraik ma’lumot 

strukturasi uchun umumlashtirilishi mumkin. Anamorphism (unfold) - dual, yaratish 

jarayoni. Hylomorphism - catamorphism ∘ anamorphism. 

Lazy evaluation va thunk’lar 

Lazy evaluation (kechiktirilgan baholash) - ifodalar kerak bo‘lganda baholanadi. 

Qat’iy baholash (strict/eager) - darhol baholash. Haskell - lazy, ko‘pchilik boshqa tillar 

- strict. Lazy evaluation afzalliklari: (1) Cheksiz strukturalar. (2) Faqat kerakli 

hisoblashlar. (3) Modulyarlik - producer va consumer ajratiladi. 

Thunk - kechiktirilgan hisoblash uchun "o‘ralgan" ifoda. Qo‘lda: data Thunk a = 

Thunk (() -> a). force (Thunk f) = f (). Haskell da avtomatik. Memoization - bir marta 

hisoblangandan keyin natija saqlanadi (sharing). Bu lazy evaluation ning muhim jihati. 

WHNF (Weak Head Normal Form) - ifoda bosh pozitsiyada lambda yoki 

constructor. Misol: Just (1 + 1) - WHNF (Just constructor), lekin (1 + 1) hali 

baholanmagan. seq funksiyasi - WHNF gacha baholash: seq a b - a ni WHNF ga 

keltiradi, keyin b qaytaradi. 
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Strictness anotatsiyalari (!): Haskell da strictness belgilash imkoniyati. data Pair 

a b = Pair !a !b - strict pair, qiymatlar darhol baholanadi. BangPatterns extension: f !x 

= ... x ni strict qiladi. Bu performance uchun muhim. 

Lazy evaluation kamchiliklari: (1) Space leaks - thunk’lar to‘planib xotira to‘lishi. 

(2) Predicting performance qiyin - qachon nima baholanishini bilish. (3) Debugging 

murakkabroq - stek trace’lari chalkash. (4) Strict ma’lumotlar (masalan, Int) uchun 

overhead. 

Stream processing - lazy evaluation ning kuchli qo‘llanmasi. Producer - 

ma’lumotlarni yaratadi (cheksiz ham bo‘lishi mumkin). Consumer - ma’lumotlarni 

qayta ishlaydi. Pipe - kompozitsiya. Fusion optimization - oraliq strukturalarni olib 

tashlash: map f . map g = map (f . g). 

Short-circuit evaluation - mantiqiy operatorlarda lazy evaluation. (&&) va (||): 

False && x = False (x baholanmaydi), True || x = True. Bu if-then-else semantikasini 

beradi va exception’larni boshqaradi: if p then x else y ≡ (p && x) || y (taqriban). 

Parallel va concurrent funksiyalar 

Parallelizm - bir vaqtning o‘zida bir nechta hisoblashlar. Concurrency - bir nechta 

hisoblashlar interleave qilinadi (vaqt bo‘yicha). Parallelizm - performance uchun, 

concurrency - strukturaning bir qismi (masalan, server). 

Pure parallelizm - side effects yo‘q, faqat tezlashtirish. Haskell da par va pseq 

primitives: par a b - a ni parallel baholash, pseq a b - a keyin b. Strategies kutubxonasi: 

parMap, parList va boshqalar. Purity parallelizmni osonlashtiradi - determinizm 

kafolati. 

Futures/Promises - asinxron hisoblash natijalari. Future a - kelajakda a tipidagi 

qiymat. await operatori - future’ni kutish. async funksiyasi - asinxron hisoblashni 

boshlash. Many tillar qo‘llab-quvvatlaydi: Scala Futures, JavaScript Promises, Python 

asyncio. 

Actors model - concurrency uchun. Actor - xabarlarni qabul qiluvchi ob’ekt. 

Xabarlar asynchronous yuboriladi. Har bir actor alohida holat va xatti-harakatga ega. 

Erlang, Akka (Scala), actor-based tillar. Actors distributed computing uchun yaxshi 

model. 

Software Transactional Memory (STM) - concurrency uchun. Transaksiyalar - 

atomik operatsiyalar bloki. Agar konflikt bo‘lsa, transaksiya qayta bajariladi (retry). 

Database transactions ga o‘xshash, lekin xotirada. Haskell STM, Clojure atoms/refs. 

Composable concurrency - monadik interface. 

Data parallelizm - ma’lumotlar strukturasi bo‘yicha parallellashtirish. Masalan, 

parallel map: har bir element mustaqil qayta ishlanadi. GPU programming - SIMD 

(Single Instruction Multiple Data). CUDA, OpenCL. Data parallelizm embarrassingly 

parallel masalalar uchun ideal. 
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MapReduce - katta hajmdagi ma’lumotlarni parallel qayta ishlash. Map bosqichi 

- ma’lumotlarni transformatsiya (parallel). Reduce bosqichi - natijalarni agregatsiya 

(gomomorfizm kerak). Google MapReduce, Hadoop. Functional programming 

paradigmasi asosida. 

Race conditions va deadlocks - concurrency muammolari. Race condition - natija 

operatsiyalar tartibiga bog‘liq. Deadlock - ikki yoki ko‘proq processlar bir-birini kutadi. 

Formal verification usullari - model checking, temporal logic. Type systems ba’zan 

data race’larni oldini oladi (Rust ownership system). 

Xulosa 

Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning tahlili va matematik 

tavsifi chuqur va ko‘p qirrali tadqiqot natijasida quyidagi fundamental xulosalarga 

kelamiz. 

Funksiyalarning formal matematik tavsifi dasturlashda abstraksiyaning asosini 

tashkil etadi. Domen, kodomen, injektivlik, surektivlik, bijektivlik tushunchalari 

funksiyaning fundamental xususiyatlarini tavsiflaydi. Kompozitsiya va identifikatsiya 

funksiyalari murakkab operatsiyalarni sodda operatsiyalardan qurish imkonini beradi. 

Funksiyalarning grafik tavsifi, ekstensional va intensional tenglik matematik rigorlikni 

ta’minlaydi. 

Yuqori tartibli funksiyalar funksional dasturlashning markaziy g‘oyasi bo‘lib, 

abstraktsiya darajasini sezilarli oshiradi. Map, filter, fold kabi klassik funksiyalar 

universal abstraktsiyalardir va deyarli barcha dasturlash tillarida mavjud. Currying va 

partial application funksiyalarni moslashtirilsh va qayta ishlatish imkoniyatlarini 

kengaytiradi. Point-free style va funksional pipeline kod o‘qilishini yaxshilaydi. 

Chiziqlilik va gomomorfizm matematik strukturalarni saqlash xususiyatini 

ifodalaydi. Gomomorfizmlar parallel hisoblashni osonlashtiradi va MapReduce 

paradigmasining asosida yotadi. Algebraik strukturalar (guruh, halqa, maydon) va ular 

orasidagi gomomorfizmlar funksiyalarning chuqur xususiyatlarini ochib beradi. 

Izomorfizm matematik ekvivalentlikni bildiradi. 

Kategoriyalar nazariyasi funksiyalarni eng umumiy darajada o‘rganish uchun 

kuchli matematik apparatni taqdim etadi. Funktorlar strukturani saqlovchi 

xaritalashlardir va ko‘plab dasturlash abstraktsiyalarini (List, Maybe, IO) yagona 

printsipda birlashtiriladi. Natural transformatsiyalar funktorlar orasidagi "uniform" 

xaritalashlardir va funksiyalar kompozitsiyasining to‘g‘riligini ta’minlaydi. 

Monadlar hisoblash kontekstini ifodalash uchun kuchli abstraktsiya hisoblanadi. 

Ular side effects’larni, xatolarni, holatni, noaniqlikni va boshqa murakkab hisoblash 

kontekstlarini funksional paradigmada boshqarish imkonini beradi. Monad qonunlari 

(assotsiativlik va identifikatsiya) hisoblashlarning kompozitsiya qobiliyatini 

kafolatlaydi. Do-notation monadik hisoblashlarni oddiy va o‘qiladigan qiladi. 
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Tip sistemalari funksiyalarning xavfsizligini ta’minlash va xatolarni erta aniqlash 

uchun muhim vositadir. Oddiy tiplar, polimorfizm (parametrik va ad-hoc), dependent 

types kabi tushunchalar turli darajadagi xavfsizlik va ifodalilikni ta’minlaydi. 

Algebraic Data Types va pattern matching kuchli abstraktsiya va xavfsiz 

manipulyatsiya imkonini beradi. Tip inference programmistlarni ortiqcha 

annotatsiyalardan ozod qiladi. 

Lambda hisob funksiyalarning eng abstrakt va fundamental modeli bo‘lib, 

hisoblashning asosiy tamoyillarini ifodalaydi. Beta, alpha va eta konversiyalar 

funksiyalarning formal semantikasini belgilaydi. Church numerallari va Y-kombinator 

lambda hisobning ekspressivligini ko‘rsatadi. Curry-Howard izomorfizmi mantiq va 

dasturlash o‘rtasidagi chuqur bog‘liqlikni ochib beradi. 

Rekursiya va induktiv ta’riflar funksiyalarni ta’riflashning tabiiy usuli hisoblanadi. 

Strukturaviy rekursiya, primitive rekursiya, umumiy rekursiya turli kuchga ega. 

Corecursiya cheksiz strukturalar bilan ishlash imkonini beradi. Catamorphism va 

anamorphism rekursiyaning umumiy sxemalarini taqdim etadi. Well-founded 

rekursiya termination’ni kafolatlaydi. 

Lazy evaluation hisoblashlarni kechiktirish va cheksiz strukturalar bilan ishlash 

imkonini beradi. Thunk’lar va memoization lazy evaluation’ning asosiy 

mexanizmlaridir. Strictness anotatsiyalari performance uchun muhim. Fusion 

optimization oraliq strukturalarni olib tashlashga yordam beradi. Lazy evaluation 

modulyarlik va kompozitsiya qobiliyatini oshiradi. 

Parallel va concurrent funksiyalar zamonaviy multicore arxitekturalardan 

foydalanish uchun zarur. Pure parallelizm determinizm kafolatini beradi. Futures, 

actors, STM kabi abstraktsiyalar turli concurrency stsenariylari uchun mos. 

MapReduce katta hajmdagi ma’lumotlarni parallel qayta ishlashning samarali 

paradigmasidir. Formal verification race conditions va deadlock’larni oldini olishga 

yordam beradi. 

Umumiy xulosa: massiv funksiyalarining matematik tahlili va tuzilishi chuqur 

nazariy asoslarga ega bo‘lib, zamonaviy dasturlash amaliyotida muhim rol o‘ynaydi. 

Kategoriyalar nazariyasi, tip sistemalari, lambda hisob va funksional paradigma 

birgalikda kuchli va xavfsiz abstraktsiyalarni yaratish imkonini beradi. Bu bilimlar 

nafaqat nazariy jihatdan qiziqarli, balki amaliy dasturlashda samarali, to‘g‘ri va 

maintainable kod yozish uchun zarurdir. 
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