"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning tahlili
va ularning tuzilishdagi matematik tavsifi

Gulbodom Oybek qizi Norqulova
BXU

Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlarda belgilangan
funksiyalarning chuqur tahlili va ularning matematik tuzilishi tadqiq gilingan. Massiv
funksiyalarining formal matematik tavsifi, algebraik xususiyatlari, funksional
kompozitsiya va hisoblash murakkabligi to‘liq o‘rganilgan. Tadqiqotda
funksiyalarning domenlar va ko‘domenlar, injektivlik va surektivlik xususiyatlari,
chiziglilik va gomomorfizm tushunchalari tahlil qilingan. Maqgolada funksiyalarning
kategorik tavsifi, funktorlar va natural transformatsiyalar, monadik strukturalar va
ularning massiv operatsiyalaridagi roli batafsil ko‘rib chiqilgan. Massiv
funksiyalarining tiplash tizimlari, polimorfizm va generiklik, lambda hisob va
funksional dasturlash paradigmasi bilan bog‘ligligi o‘rganilgan. Tadqiqot natijalari
zamonaviy dasturlash tillarida massiv funksiyalarini to‘g‘ri loyihalash, samarali
amalga oshirish va formal verifikatsiya gilish uchun nazariy asos yaratadi.

Kalit so‘zlar: massiv funksiyalari tahlili, matematik tuzilish, funksional
dasturlash, kategoriyalar nazariyasi, tip sistemalari, funktorlar, monadlar,
gomomorfizm, kompozitsiya, polimorfizm, lambda hisob, formal tavsif, algebraik
strukturalar

Analysis of Functions Defined on Multidimensional Arrays
and Their Mathematical Structural Description

Gulbodom Oybek qizi Norqulova
BIU

Abstract: This article presents an in-depth analysis of functions defined on
multidimensional arrays and their mathematical structural properties. The formal
mathematical characterization of array functions, their algebraic features, functional
composition, and computational complexity are thoroughly examined. The study
analyzes domains and codomains of functions, injectivity and surjectivity, linearity,
and the concept of homomorphism. The paper provides a detailed discussion of the
categorical description of functions, functors and natural transformations, monadic
structures, and their role in array operations. The type systems of array functions,
polymorphism and genericity, as well as their relationship with lambda calculus and

ISSN 2181-0842 | IMPACT FACTOR 4.525 98 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

the functional programming paradigm, are explored. The results offer a theoretical
foundation for the correct design, efficient implementation, and formal verification of
array functions in modern programming languages.

Keywords: array function analysis, mathematical structure, functional
programming, category theory, type systems, functors, monads, homomorphism,
composition, polymorphism, lambda calculus, formal specification, algebraic
structures

Kirish

Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning matematik tahlili va
tuzilishini o‘rganish zamonaviy hisoblash matematikasi va dasturlash nazariyasining
muhim yo‘nalishi hisoblanadi. Funksiyalar - dasturlashning asosiy abstraktsiyasi bo‘lib,
ular ma’lumotlarni transformatsiya qilish, hisoblashlarni tashkil etish va murakkab
tizimlarni qurish uchun zarur vositadir.

Massiv funksiyalari oddiy matematik funksiyalardan murakkabligida farq qiladi,
chunki ular ko‘p o‘lchovli strukturalar ustida ishlaydi, turli xil operatsiyalarni qo‘llab-
quvvatlaydi va hisoblash samaradorligiga katta ta’sir ko‘rsatadi. Funksiyalarning
matematik tavsifi ularning xususiyatlarini formal tarzda ifodalash, to‘g‘riligini
isbotlash va optimallashtirish imkoniyatlarini aniglash uchun zarur.

Funksiyalarning tuzilishi bir necha darajada tahlil gilinishi mumkin. Sintaktik
daraja funksiyaning ta’rif va ishlatilish sintaksisini tavsiflaydi. Semantik daraja
funksiyaning ma’nosini, ya’ni u qanday hisoblashni bajarishini ifodalaydi. Pragmatik
daraja funksiyaning amaliy xususiyatlarini - samaradorlik, xotira sarfi,
parallellashtirish imkoniyatlarini 0z ichiga oladi.

Kategoriyalar nazariyasi funksiyalarni umumiy va abstrakt darajada o‘rganish
uchun kuchli matematik apparatni taqdim etadi. Funktorlar, natural transformatsiyalar,
monadlar kabi tushunchalar murakkab funksional strukturalarni tavsiflash va
tizimlashtirish imkonini beradi. Bu yondashuv zamonaviy funksional dasturlash
tillarida (Haskell, Scala, F#) keng qo‘llaniladi.

Tip sistemalari funksiyalarning xavfsizligini ta’minlash va xatolarni
kompilyatsiya vaqtida aniglash uchun muhim. Polimorfizm va generiklik umumiy
funksiyalar yozish imkonini beradi. Parametrik polimorfizm tiplardan mustaqil ishlash,
ad-hoc polimorfizm esa overloading va type classes orqali turli tiplar uchun maxsus
realizatsiyalar yaratish imkonini beradi.

Lambda hisob funksiyalarning eng abstrakt matematik modeli bo‘lib,
hisoblashning asosiy tamoyillarini ifodalaydi. Church-Turing tezisi lambda hisobning
Turing mashinalari bilan ekvivalentligini ta’kidlaydi. Curry-Howard izomorfizmi
mantiq va tiplar nazariyasi o‘rtasidagi chuqur bog‘liglikni ko‘rsatadi: isbotlar
dasturlarga, formulalar esa tiplarga mos keladi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 99 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Tadqgiqgotning magsadi ko‘p o‘lchovli massiv funksiyalarining to‘liq matematik
tahlilini amalga oshirish, ularning tuzilishini formal tavsiflash, xususiyatlarini
sistemalashtirish va zamonavir dasturlash amaliyotiga nazariy asos yaratishdan iborat.
Tadqiqot ob’ekti sifatida turli toifadagi massiv funksiyalari, ularning algebraik va
kategorik xususiyatlari, tip sistemalari va formal semantika tanlab olingan.

Asosiy qgism

Funksiyalarning formal matematik tavsifi

Funksiya matematikada ikkita to‘plam orasidagi xaritalash sifatida aniqlanadi.
Formal ta’rif: funksiya f: A — B - bu to‘plamlar A (domen) dan B (kodomen) ga
xaritalash bo‘lib, har bir a € A uchun yagona b € B mavjud bo‘lib, f(a) = b. Bu ta’rif
funksiyaning aniqlanganligini (har bir kirish uchun natija mavjud) va determinizimini
(bir kirish uchun faqat bitta natija) kafolatlaydi.

Massiv funksiyalari umumiy shaklda f: Array[Ti] — Array[Tz] yoki ko‘p
parametrli: f: Array[T:] X Array[T2] x ... — Array[T out] ko‘rinishda yoziladi. Bu
yerda Array[T] - T tipidagi elementlardan tashkil topgan massivlar to‘plami. Masalan,
map funksiyasi: map: (T1 — T2) X Array[T:1] — Array[T2] - birinchi argument funksiya,
ikkinchisi massiv.

Qisman qo‘llaniladigan funksiyalar (partial functions) ba’zi kirish qiymatlarida
aniqlanmagan bo‘lishi mumkin. Masalan, division funksiyasi div: R x R — R ikkinchi
argument 0 bo‘lganda aniglanmagan. To‘liq funksiyalar (total functions) barcha kirish
qiymatlart uchun aniqlangan. Dasturlashda qisman funksiyalar exception yoki
Option/Maybe tiplari orqali boshqgariladi.

Funksiyaning grafigi I'(f) = {(a, f(a)) : a € A} € A x B to‘plami funksiyani to‘liq
tavsiflaydi. Ikki funksiya f va g teng (f = g), agar ularning domenlari bir xil va barcha
a uchun f(a) = g(a) bo‘lsa. Bu ekstensional tenglik deyiladi (natijalar bo‘yicha).
Intensional tenglik ta’riflar bo‘yicha tenglikni bildiradi.

Funksiya kompozitsiyasi murakkab operatsiyalarni oddiy operatsiyalardan qurish
imkonini beradi. Agar f: A — B va g: B — C bo‘lsa, kompozitsiya g o f: A — C
quyidagicha: (g o f)(a) = g(f(a)). Kompozitsiya assotsiativ: h o (g o f) = (h o g) o f, lekin
kommutativ emas: g o f# f o g (umuman).

Identifikatsiya funksiyasi id A: A — A har bir elementni o°‘ziga akslantiradi:
id_A(a) = a. Bu kompozitsiyaning neytral elementi: f o id A =fvaid B o f={f. Har
bir to‘plam uchun yagona identifikatsiya funksiyasi mavjud.

Injektivlik, surektivlik va bijektivlik

Funksiyaning muhim xususiyatlari uning elementlarni qanday akslantirishi bilan
bog‘liq. Injektiv funksiya (in’ektsiya, bir-birlikli) f: A — B - turli elementlar turli
qiymatlarga akslanadi: a1 # a» = f(a1) # f(az2). Ekvivalent: f(a:) = f(a2) = a1 = a..
Injektivlik funksiyaning "ma’lumotni yo‘qotmasligi"ni bildiradi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 100 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Surektiv funksiya (sur’ektsiya, ustiga) f: A — B - har bir b € B uchun kamida
bitta a € A mavjud bo‘lib, f(a) =b. Ya’ni, kodomenning barcha elementlari "erishiladi".
Formal: Vb € B, 3a € A: f(a) =b. Surektivlik funksiyaning "to‘liq qoplamini" bildiradi.

Bijektiv funksiya (bijektsiya, o‘zaro bir qiymatli moslik) ham injektiv, ham
surektiv. Bijektiv funksiya A va B to‘plamlar o‘rtasida "mukammal moslik" o‘rnatadi.
Har bir bijektiv funksiya uchun teskari funksiya f': B — A mavjud bo‘lib, f!(f(a)) =
a va f(f"(b)) = b. Teskari funksiya ham bijektiv.

Massiv funksiyalari kontekstida: map funksiyasi injektiv emas (turli massivlar bir
xil natijaga olib kelishi mumkin). filter funksiyasi surektiv emas (barcha mumkin
massivlar hosil qilinmaydi). reverse funksiyasi bijektiv (har bir massivning yagona
teskari tartibi bor va barcha tartiblar erishiladi).

Kardinallik (to‘plam quvvati) bilan bog‘liglik: Agar f: A — B injektiv bo‘lsa, |A]
< |B|. Agar surektiv bo‘lsa, |A| > B|. Agar bijektiv bo‘lsa, |A| = |B|. Cantor teoremasi:
har ganday to‘plam A uchun |A| < |[P(A)| (quvvat to‘plami kattaroq). Bu cheksiz
to‘plamlar ierarxiyasini yaratadi.

Teskari tasvir (preimage) f'(B’) = {a € A : f(a) € B’} - funksiya natijasi B’ ga
tegishli barcha elementlar. Teskari tasvir har doim to‘plam qaytaradi (funksiya injektiv
bo‘lmasa ham). Xususiyatlar: £'(B:1 U B2) = {'(B:) U '(B2), f'(B: N B2) =f(B:) N
f1(B2).

Yugori tartibli funksiyalar va funksional abstraktsiya

Yuqori tartibli funksiyalar (higher-order functions) boshqa funksiyalarni
argument sifatida qgabul qiladi yoki natija sifatida qaytaradi. Bu funksional
dasturlashning asosiy tushunchasi bo‘lib, abstraktsiya darajasini oshiradi.

Map funksiyasi klassik misoldir: map: (a — b) — [a] — [b], bu yerda [a] - a
tipidagi elementlar ro‘yxati. Map har bir element uchun berilgan funksiyani qo‘llaydi:
map f [Xi, X2, ..., Xa] = [f(X1), f(X2), ..., f(Xa)]. Map funktorning funksional ekvivalenti.

Filter funksiyasi shartga mos elementlarni tanlaydi: filter: (a — Bool) — [a] —
[a]. filter p [X1, X2, ..., Xa] = [Xi : p(Xi) = True]. Bu to‘plamlar nazariyasidagi {x € A :
P(x)} notation’iga mos keladi.

Fold (reduce) funksiyasi massivni bitta qiymatga "yig‘adi": foldl: (b - a —b) —
b — [a] — b. foldl f z [x1, X2, ..., Xa] = f(... {(f(z, x1), X2) ..., Xn). Bu iterativ jarayon.
foldr o‘ngdan boshlaydi va lazy evaluation imkonini beradi.

Funksiyalarni gaytarish (function returning): curry funksiyasi ko‘p parametrli
funksiyani bir parametrli funksiyalar zanjiriga aylantiradi: curry: ((a, b) —» ¢) — (a —
(b — ¢)). Masalan, add: (Int, Int) — Int ni curry add: Int — (Int — Int) ga. Bu Currying
deyiladi (Haskell Curry sharafiga).

Kompozitsiya operatori (o) ham yugqori tartibli funksiya: (¢): (b — ¢) — (a — b)
— (a — ¢). Bu funksiyalarni "ulash" imkonini beradi: (g o f)(x) = g(f(x)). Point-free

ISSN 2181-0842 | IMPACT FACTOR 4.525 101 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

style - argumentlarni ko‘rsatmasdan funksiyalarni ta’riflash: sumSquares = sum o (map
square).

Funksional pipeline ([>) operatori chap-o‘ng tartibda yozish imkonini beradi: x [>
f = f(x). Bu imperativ dasturlashga o‘xshash tartib yaratadi: data [> filter p [> map f >
sum. Ko‘plab zamonaviy tillarda (F#, Elixir, JavaScript) qo‘llab-quvvatlanadi.

Partial application funksiyaning ba’zi argumentlarini "fiksatlash": let add5 = add
5 in add5 3 = 8. Bu yangi, maxsuslashtizilgan funksiyalar yaratish imkonini beradi.
Closure - funksiya o‘z muhitidagi o‘zgaruvchilarni "eslab qoladi": let makeAdder x =
Ay. x +y in let add5 = makeAdder 5.

Chiziqlilik va gomomorfizm

Chizigli funksiya vektorli fazolar orasidagi xaritalash bo‘lib, ikki xossani
qanoatlantiradi: f(x + y) = f(x) + f(y) (additivlik) va f(ax) = af(x) (bir jinslilik).
Birlashtirilgan: f(ax + By) = af(x) + Bf(y). Chizigli funksiyalar chiziqli algebra va
geometriyada asosiy rol o‘ynaydi.

Massiv kontekstida, map chizigli: map f (xs ++ ys) = map f xs ++ map f ys, bu
yerda ++ - ro‘yxatlarni birlashtirish. Lekin map chiziqgli operator emas (vektorli fazolar
orasida emas), balki funktordir (kategoriyalar nazariyasida).

Gomomorfizm - algebraik strukturani saqlovchi xaritalash. Agar (A, *) va (B, -)
- ikki guruh bo‘lsa, gomomorfizm f: A — B quyidagini ganoatlantiradi: f(a * b) =
f(a) - f(b). Masalan, logarifm gomomorfizm: log(xy) = log(x) + log(y) (ko‘paytirish —
qo‘shish).

[zomorfizm - bijektiv gomomorfizm. Agar f: A — B izomorfizm bo‘lsa, teskari
f': B — A ham gomomorfizm. Izomorf strukturalar "matematik jihatdan bir xil"
hisoblanadi. Masalan, (R, +) va (R*, X) izomorf: f(x) = e¥, {(y) = In(y).

Endomorfizm - gomomorfizm A — A (bir xil to‘plamga). Avtomorfizm - bijektiv
endomorfizm. Masalan, matritsa transpozitsiyasi M _{mxn} — M {nxm}
gomomorfizm, lekin endomorfizm faqat kvadrat matritsalar uchun (n = m).

List funksiyalari va gomomorfizm: map f funktor gomomorfizm: map f [] = [],
map f (x:xs) = f(x) : map f xs. filter ham "qisman" gomomorfizm. concat: [[a]] — [a]
monoid gomomorfizm: concat (xs ++ ys) = concat xs ++ concat ys.

Amaliy ahamiyat: gomomorfizmlar parallel hisoblashni osonlashtiradi. Agar f
gomomorfizm bo‘lsa, f(a * b) = f(a) - f(b), u holda f(a) va f(b) parallel hisoblanishi
mumkin. Map-reduce paradigmasi shu prinsipga asoslangan: map bosqichi parallel,
reduce gomomorfizm bo‘lsa, u ham parallellashtirish mumkin.

Kategoriyalar nazariyasi va funktorlar

Kategoriya C - ob’ektlar to‘plami va ular orasidagi morfizmlar (o‘qlar) majmuasi
bo‘lib, quyidagi aksiomalarga bo‘ysinadi: (1) Har bir ob’ekt A uchun identifikatsiya
morfizmi id_A: A — A mavjud. (2) Morfizmlar kompozitsiyalanishi mumkin: agar f:

ISSN 2181-0842 | IMPACT FACTOR 4.525 102 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

A —>Bvag:B— Cbo‘lsa, go f: A — C. (3) Kompozitsiya assotsiativ: h o (g o f) =
(h o g) o f. (4) Identifikatsiya neytral element: foid A=1f,id Bo f=1.

Misollar: Set kategoriyasi - ob’ektlar to‘plamlar, morfizmlar funksiyalar. Vect
kategoriyasi - ob’ektlar vektorli fazolar, morfizmlar chiziqli operatorlar. Grp
kategoriyasi - ob’ektlar guruhlar, morfizmalar gomomorfizmlar. Hask kategoriyasi -
ob’ektlar Haskell tiplari, morfizmlar funksiyalar (taqriban).

Funktor F: C — D - ikki kategoriya orasidagi "strukturani saqlovchi" xaritalash.
Funktor ob’ektlarni ob’ektlarga va morfizmlarni morfizmlarga akslantiradi: F(A) - D
dagi ob’ekt, F(f: A — B) = F(f): F(A) — F(B) - D dagi morfizm. Shartlar: (1) F(id_A)
=1d {F(A)}. (2) F(g o f) = F(g) o F(f) (kompozitsiya saqlanadi).

List funktori: List: Hask — Hask. Ob’ektlarga: List(A) = [A]. Morfizmlarga:
List(f) = map f. Tekshirish: map 1d = id (birinchi qonun), map (g o f) =map g e map f
(ikkinchi gonun). List - endofunktor (bir kategoriyada).

Maybe funktori: Maybe(A) = Just A | Nothing. fmap: (a — b) — Maybe a —
Maybe b. fmap f (Just x) = Just (f x), fmap f Nothing = Nothing. Bu gisman
funksiyalarni to‘liq funksiyalarga "lift" qilish imkonini beradi.

Funktorlarning kompozitsiyasi ham funktor: agar F: C — D va G: D — E
funktorlar bo‘lsa, G o F: C — E ham funktor. Identifikatsiya funktor Id: C — C
ob’ektlar va morfizmlarni o‘zgartirsiz qoldiradi. Funktorlar o°zlari kategoriya tashkil
etadi: ob’ektlar - funktorlar, morfizmlar - natural transformatsiyalar.

Kontravariant funktor teskari yo‘nalish morfizmlarni akslantiradi: F(f: A — B):
F(B) — F(A). Masalan, Hom funktor: Hom(-, A): C*op — Set (C"op - teskari
kategoriya). Kovariant funktor oddiy yo‘nalish: F(f: A — B): F(A) — F(B). Odatda
"funktor" deganda kovariant nazarda tutiladi.

Natural transformatsiyalar va funktorlar orasidagi morfizmlar

Natural transformatsiya a: F = G - ikki funktor F, G: C — D orasidagi "uniform"
xaritalash. Har bir C dagi ob’ekt A uchun D dagi morfizm a_A: F(A) — G(A) mavjud
bo‘lib, naturality sharti bajariladi: har bir f: A — B morfizm uchun G(f) ca. A=0_B
o F(f) (kommutativ kvadrat).

Misol: reverse: List = List. Har bir tip A uchun reverse A:[A] — [A]. Naturality:
reverse o map f=map f o reverse. Bu shuni bildiriki, map f ni oldin yoki keyin qo‘llash
natija bir xil.

Monad - maxsus struktura funktorlar bilan: monad T kategoriya C da uchta
komponentdan iborat: (1) Endofunktor T: C — C. (2) Natural transformatsiya n: Id =
T (unit yoki return). (3) Natural transformatsiya u: T o T = T (join yoki flatten).
Shartlar (monad qonunlari): p o T(p) = p o w(T) (assotsiativlik), g o T(m) =p o n(T) =
id (identifikatsiya).

ISSN 2181-0842 | IMPACT FACTOR 4.525 103 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

List monad: T = List, n(x) = [x] (singleton), u = concat. Maybe monad: T = Maybe,
n(x) = Just x, p(Just (Just x)) = Just x, u_ = Nothing (boshqa hollarda). State monad,
IO monad, Reader monad - dasturlashda keng qo‘llaniladigan monadlar.

Monad va hisoblash: monad "hisoblash konteksti"ni ifodalaydi. Maybe -
muvaffaqiyatsizlik mumkinligi, List - noaniqlik (ko‘p natija), IO - I/O effektlar, State
- holat o‘zgarishi. Bind operatori (>>=): m >>= f = p(T(f)(m)) hisoblashlarni ketma-
ket bog‘lash imkonini beradi.

Do-notation (Haskell) monadik hisoblashlarni imperativ ko‘rinishda yozish
sintaktik shakar: do {x «— m; fx} =m >>=f. Bumonodlarni oddiy kod sifatida ishlatish
imkonini beradi, lekin qat’iy matematik semantikaga ega.

Monadlarning amaliy ahamiyati: (1) Side effects’larni boshgarish (IO monad). (2)
Xatolarni boshgarish (Maybe, Either monad). (3) Holatni boshgarish (State monad). (4)
Noaniqlikni ifodalash (List monad). (5) Dependency injection (Reader monad).
Monadlar "programmable semicolon" - hisoblashlar orasidagi o‘tishni dasturlash
imkoniyati.

Tip sistemalari va polimorfizm

Tip sistemi - dasturlash tilining statik tahlil qismi bo‘lib, programmadagi ifodalar
tiplitini tekshiradi va tip xatolarini kompilyatsiya vaqtida aniqlaydi. Magsad: runtime
xatolarini kamaytirish, programmaning to‘g‘riligini ta’minlash.

Oddiy tip sistemasi (Simply Typed Lambda Calculus): bazis tiplari (Int, Bool) va
funksiya tiplari (A — B). Tip qoidalari: (1) Har bir o‘zgaruvchi tipga ega. (2) Agar f:
A — B va x: A bo‘lsa, f(x): B. (3) Agar x: A I e: B bo‘lsa (x tipida A kontekstda e
tipida B), Ax. e: A — B.

Polimorfizm - umumiy kod yozish imkoniyati. Parametrik polimorfizm (generics):
funksiya barcha tiplar uchun bir xil ishlaydi. Misol: identity: Va. a — a, 1d x = x.
Haskell da: id :: a -> a. Java da: <T> T identity(T x). Parametrik polimorfizm "free
theorems" beradi (Wadler): tip signaturasidan xatti-harakatni xulosa qilish.

Ad-hoc polimorfizm - funksiya turli tiplar uchun turli amalga oshiriladi.
Overloading: + operatori Int va Float uchun turlicha. Type classes (Haskell): class Eq
a where (==) :: a -> a -> Bool. Instance: instance Eq Int where x ==y = ... Typeclass
polimorfizmdan kuchliroq: qo‘shimcha cheklovlar (constraints).

Subtype polimorfizm (OOP): agar B A ning subtype’i bo‘lsa (B <: A), B tipidagi
qiymat A tipida ishlatilishi mumkin. Liskov substitution prinsipi: subtype supertype’ni
to‘liq almashtirishi kerak. Variance: covariance (B <: A = List[B] <: List[A]),
contravariance, invariance.

Dependent types - tiplar qiymatlarga bog‘liq bo‘lishi mumkin. Misol: Vector n a
- uzunligi n bo‘lgan vektor. append: Vector n a -> Vector m a -> Vector (n+m) a.
Dependent types juda kuchli: matematik isbotlarni kod sifatida ifodalash (Curry-
Howard isomorphism). Coq, Agda, Idris tillar1 dependent types qo‘llab-quvvatlaydi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 104 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Algebraic Data Types (ADT): sum types (yoki tagged unions): data Maybe a =
Just a | Nothing. Product types (tuples, records): (Int, String). ADT patterna matching
bilan birga kuchli abstraktsiya yaratadi. GADTs (Generalized ADTs) yanada kuchlirogq.

Tip inference - tiplarni avtomatik aniqlash. Hindley-Milner algoritmi: let
polimorfizmni qo‘llab-quvvatlaydi va to‘liq tip annotatsiyalarni talab qilmaydi.
Haskell, OCaml, F# da ishlatiladi. Tip xatolari kompilyatsiya vaqtida aniglanadi, bu
runtime xatolarini kamaytiradi.

Lambda hisob va funksiyalar semantikasi

Lambda hisob - funksiyalarning eng abstrakt modeli, Alonzo Church tomonidan
1930-yillarda ishlab chiqilgan. Uchta asosiy tuzilma: (1) O‘zgaruvchi: x, y, z. (2)
Abstraktsiya (funksiya ta’rifi): Ax. e (x parametrli funksiya, tanasi e). (3) Aplikatsiya
(funksiya qo‘llash): e: e.

Beta-redutsiya (B-redutsiya) - funksiyani qo‘llash: (Ax. €) v — B e[x := v], bu
yerda e[x := v] - e da x ni v bilan almashtirish. Misol: (Ax. x + 1) 5 — 5+ 1=6.
Beta-redutsiya hisoblashning asosiy qadami.

Alpha-konversiya (a-konversiya) - o‘zgaruvchilarni qayta nomlash: Ax. e = a Ay.
e[x :=y] (agar y e da erkin emas). Bu "bound variables" ni o‘zgartirish. Masalan: Ax.
X = o Ay. y (har ikkalasi ham identifikatsiya). Alpha-konversiya name capture
muammosini oldini oladi.

Eta-konversiya (n-konversiya) - funksiya ekstensionalligi: Ax. f x = n f(agar x f
da erkin emas). Bu demak, funksiya faqat o‘z argumentini boshqa funksiyaga uzatsa,
ular ekvivalent. Eta-redutsiya "useless lambda" ni olib tashlaydi.

Church numerallari: natural sonlarni funksiyalar orqali ifodalash. 0 = Af. Ax. x, 1
=AM Ax. £x, 2 =AM Ax. £ (fx), n=Af. Ax. *n x. Qo‘shish: plus = Am. An. Af. Ax. m f (n
f x). Ko‘paytirish: mult = Am. An. Af. m (n f). Bu lambda hisobning Turing-to‘liq
ekanligini ko‘rsatadi.

Y-kombinator (fixed-point kombinator): Y = Af. (Ax. f (x x)) (Ax. f (x x)). Xossa:
Y f=f (Y f). Bu rekursiyani lambda hisobda ifodalash imkonini beradi. Masalan,
faktorial: fact =Y (Af. An. if n == 0 then 1 else n * f (n-1)).

Call-by-value vs call-by-name: CBV - argumentlar avval baholanadi, keyin
funksiya. CBN - argumentlar kerak bo‘lganda baholanadi (lazy). Haskell - CBN
(anigrog‘i, call-by-need, ya’ni memoization bilan). Ko*pchilik boshqa tillar - CBV.
CBN cheksiz strukturalar (infinite lists) imkonini beradi.

Denotational semantika - programmalarni matematik ob’ektlarga akslantirish.
Lambda ifoda - funksiya (matematikada). Operational semantika - programmaning
ganday bajarilishini tavsiflash (reduction steps). Axiomatic semantika -
programmaning xususiyatlarini mantiqiy aksiomalarda ifodalash (Hoare logic).

Rekursiya va induktiv ta’riflar

ISSN 2181-0842 | IMPACT FACTOR 4.525 105 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Rekursiya - funksiyaning o‘zini chagqirishi. Matematik induxktsiya bilan bog‘liq:
(1) Baza holati: f(0) = ... (2) Induktiv qadam: f(n+1) =... f(n) ... Misol: faktorial fakt(0)
=1, fakt(n+1) = (n+1) * fakt(n).

Strukturaviy rekursiya - ma’lumot strukturasi bo‘yicha rekursiya. Ro‘yxatlar
uchun: sum [] = 0 (bo‘sh ro‘yxat), sum (x:xs) = x + sum xs (bosh va quyruq). Daraxtlar
uchun: depth Leaf = 0, depth (Node 1 r) = 1 + max (depth 1) (depth).

Primitive rekursiya - rekursiya fagat strukturaning "kichikroq" qismlarida.
Umumiy rekursiya - ixtiyoriy, masalan, Ackermann funksiyasi. Primitive rekursiya har
doim to‘xtaydi (terminating), umumiy rekursiya esa yo‘q. Totality checker (Agda, Idris)
funksiyaning termination’ini tekshiradi.

Corecursiya (dual to recursiya) - cheksiz strukturalarni yaratish. Masalan, cheksiz
ro‘yxat: ones = 1 : ones (cheksiz birlar). fibonacci =0 : 1 : zipWith (+) fibonacci (tail
fibonacci). Corecursiya lazy evaluation bilan birga ishlaydi.

Mutual rekursiya - ikki yoki ko‘proq funksiyalar bir-birini chaqgiradi. Misol: even
0 = True, even n = odd (n-1); odd 0 = False, odd n = even (n-1). Mutual rekursiya
ba’zan tabily modellashtirish beradi.

Tail rekursiya - rekursiv chaqiruv funksiyaning oxirgi operatsiyasi. Tail call
optimization (TCO) tail rekursiyani loopga aylantiradi (stack overflow’ni oldini oladi).
Misol: fakt tail n acc = if n == 0 then acc else fakt tail (n-1) (n * acc). Ko‘plab
functional tillar TCO qo‘llab-quvvatlaydi.

Well-founded rekursiya - rekursiya "kamayuvchi" o‘lchov bo‘yicha. Har bir
chaqiruvda o‘lchov kamayadi va minimal element mavjud (yo‘q cheksiz tushlishlar).
Misol: Euclidean algoritmi gcd(a, b) = gcd(b, a mod b) - ikkinchi argument kamayadi.

Catamorphism (fold) - rekursiyaning umumiy sxemasi. Ro‘yxatlar uchun: foldr f
Z [X1, X2, ..., Xa] = £ X1 (f X2 (... (f Xa 2))). Catamorphism istalgan algebraik ma’lumot
strukturasi uchun umumlashtirilishi mumkin. Anamorphism (unfold) - dual, yaratish
jarayoni. Hylomorphism - catamorphism o anamorphism.

Lazy evaluation va thunk’lar

Lazy evaluation (kechiktirilgan baholash) - ifodalar kerak bo‘lganda baholanadi.
Qat’1y baholash (strict/eager) - darhol baholash. Haskell - lazy, ko‘pchilik boshqa tillar
- strict. Lazy evaluation afzalliklari: (1) Cheksiz strukturalar. (2) Faqat kerakli
hisoblashlar. (3) Modulyarlik - producer va consumer ajratiladi.

Thunk - kechiktirilgan hisoblash uchun "o‘ralgan" ifoda. Qo‘lda: data Thunk a =
Thunk (() -> a). force (Thunk f) = f (). Haskell da avtomatik. Memoization - bir marta
hisoblangandan keyin natija saqlanadi (sharing). Bu lazy evaluation ning muhim jihati.

WHNF (Weak Head Normal Form) - ifoda bosh pozitsiyada lambda yoki
constructor. Misol: Just (1 + 1) - WHNF (Just constructor), lekin (1 + 1) hali
baholanmagan. seq funksiyasi - WHNF gacha baholash: seq a b - a ni WHNF ga
keltiradi, keyin b qaytaradi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 106 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Strictness anotatsiyalari (!): Haskell da strictness belgilash imkoniyati. data Pair
a b = Pair !a !b - strict pair, qiymatlar darhol baholanadi. BangPatterns extension: f !x
= ... x ni strict qiladi. Bu performance uchun muhim.

Lazy evaluation kamchiliklari: (1) Space leaks - thunk’lar to“planib xotira to‘lishi.
(2) Predicting performance qiyin - qachon nima baholanishini bilish. (3) Debugging
murakkabroq - stek trace’lari chalkash. (4) Strict ma’lumotlar (masalan, Int) uchun
overhead.

Stream processing - lazy evaluation ning kuchli qo‘llanmasi. Producer -
ma’lumotlarni yaratadi (cheksiz ham bo‘lishi mumkin). Consumer - ma’lumotlarni
qayta ishlaydi. Pipe - kompozitsiya. Fusion optimization - oraliq strukturalarni olib
tashlash: map . map g=map (f. g).

Short-circuit evaluation - mantiqiy operatorlarda lazy evaluation. (&&) va (J|):
False && x = False (x baholanmaydi), True || x = True. Bu if-then-else semantikasini
beradi va exception’larni boshqgaradi: if p then x else y = (p && X) || y (tagriban).

Parallel va concurrent funksiyalar

Parallelizm - bir vaqtning o‘zida bir nechta hisoblashlar. Concurrency - bir nechta
hisoblashlar interleave qilinadi (vaqt bo‘yicha). Parallelizm - performance uchun,
concurrency - strukturaning bir qismi (masalan, server).

Pure parallelizm - side effects yo‘q, faqat tezlashtirish. Haskell da par va pseq
primitives: par a b - a ni parallel baholash, pseq a b - a keyin b. Strategies kutubxonasi:
parMap, parList va boshqalar. Purity parallelizmni osonlashtiradi - determinizm
kafolati.

Futures/Promises - asinxron hisoblash natijalari. Future a - kelajakda a tipidagi
qiymat. await operatori - future’ni kutish. async funksiyasi - asinxron hisoblashni
boshlash. Many tillar qo‘llab-quvvatlaydi: Scala Futures, JavaScript Promises, Python
asyncio.

Actors model - concurrency uchun. Actor - xabarlarni gabul qiluvchi ob’ekt.
Xabarlar asynchronous yuboriladi. Har bir actor alohida holat va xatti-harakatga ega.
Erlang, Akka (Scala), actor-based tillar. Actors distributed computing uchun yaxshi
model.

Software Transactional Memory (STM) - concurrency uchun. Transaksiyalar -
atomik operatsiyalar bloki. Agar konflikt bo‘lsa, transaksiya qayta bajariladi (retry).
Database transactions ga o‘xshash, lekin xotirada. Haskell STM, Clojure atoms/refs.
Composable concurrency - monadik interface.

Data parallelizm - ma’lumotlar strukturasi bo‘yicha parallellashtirish. Masalan,
parallel map: har bir element mustaqil qayta ishlanadi. GPU programming - SIMD
(Single Instruction Multiple Data). CUDA, OpenCL. Data parallelizm embarrassingly
parallel masalalar uchun ideal.

ISSN 2181-0842 | IMPACT FACTOR 4.525 107 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

MapReduce - katta hajmdagi ma’lumotlarni parallel qayta ishlash. Map bosqichi
- ma’lumotlarni transformatsiya (parallel). Reduce bosqichi - natijalarni agregatsiya
(gomomorfizm kerak). Google MapReduce, Hadoop. Functional programming
paradigmasi asosida.

Race conditions va deadlocks - concurrency muammolari. Race condition - natija
operatsiyalar tartibiga bog‘liq. Deadlock - ikki yoki ko‘proq processlar bir-birini kutadi.
Formal verification usullari - model checking, temporal logic. Type systems ba’zan
data race’larni oldini oladi (Rust ownership system).

Xulosa

Ko‘p o‘lchovli massivlarda belgilangan funksiyalarning tahlili va matematik
tavsifi chuqur va ko‘p qirrali tadqiqot natijasida quyidagi fundamental xulosalarga
kelamiz.

Funksiyalarning formal matematik tavsifi dasturlashda abstraksiyaning asosini
tashkil etadi. Domen, kodomen, injektivlik, surektivlik, bijektivlik tushunchalari
funksiyaning fundamental xususiyatlarini tavsiflaydi. Kompozitsiya va identifikatsiya
funksiyalari murakkab operatsiyalarni sodda operatsiyalardan qurish imkonini beradi.
Funksiyalarning grafik tavsifi, ekstensional va intensional tenglik matematik rigorlikni
ta’minlaydi.

Yugori tartibli funksiyalar funksional dasturlashning markaziy g‘oyasi bo‘lib,
abstraktsiya darajasini sezilarli oshiradi. Map, filter, fold kabi klassik funksiyalar
universal abstraktsiyalardir va deyarli barcha dasturlash tillarida mavjud. Currying va
partial application funksiyalarni moslashtirilsh va qayta ishlatish imkoniyatlarini
kengaytiradi. Point-free style va funksional pipeline kod o‘qilishini yaxshilaydi.

Chiziglilik va gomomorfizm matematik strukturalarni saqlash xususiyatini
ifodalaydi. Gomomorfizmlar parallel hisoblashni osonlashtiradi va MapReduce
paradigmasining asosida yotadi. Algebraik strukturalar (guruh, halga, maydon) va ular
orasidagi gomomorfizmlar funksiyalarning chuqur xususiyatlarini ochib beradi.
[zomorfizm matematik ekvivalentlikni bildiradi.

Kategoriyalar nazariyasi funksiyalarni eng umumiy darajada o‘rganish uchun
kuchli matematik apparatni taqdim etadi. Funktorlar strukturani saqlovchi
xaritalashlardir va ko‘plab dasturlash abstraktsiyalarini (List, Maybe, 10) yagona
printsipda birlashtiriladi. Natural transformatsiyalar funktorlar orasidagi "uniform"
xaritalashlardir va funksiyalar kompozitsiyasining to‘g‘riligini ta’minlaydi.

Monadlar hisoblash kontekstini ifodalash uchun kuchli abstraktsiya hisoblanadi.
Ular side effects’larni, xatolarni, holatni, noaniqlikni va boshqa murakkab hisoblash
kontekstlarini funksional paradigmada boshqgarish imkonini beradi. Monad qonunlari
(assotsiativlik va 1identifikatsiya) hisoblashlarning kompozitsiya qobiliyatini
kafolatlaydi. Do-notation monadik hisoblashlarni oddiy va o‘qiladigan qiladi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 108 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Tip sistemalari funksiyalarning xavfsizligini ta’minlash va xatolarni erta aniglash
uchun muhim vositadir. Oddiy tiplar, polimorfizm (parametrik va ad-hoc), dependent
types kabi tushunchalar turli darajadagi xavfsizlik va ifodalilikni ta’minlaydi.
Algebraic Data Types va pattern matching kuchli abstraktsiya va xavfsiz
manipulyatsiya imkonini beradi. Tip inference programmistlarni ortigcha
annotatsiyalardan ozod qiladi.

Lambda hisob funksiyalarning eng abstrakt va fundamental modeli bo‘lib,
hisoblashning asosiy tamoyillarini ifodalaydi. Beta, alpha va eta konversiyalar
funksiyalarning formal semantikasini belgilaydi. Church numerallari va Y -kombinator
lambda hisobning ekspressivligini ko‘rsatadi. Curry-Howard izomorfizmi mantiq va
dasturlash o‘rtasidagi chuqur bog‘liglikni ochib beradi.

Rekursiya va induktiv ta’riflar funksiyalarni ta’riflashning tabiiy usuli hisoblanadi.
Strukturaviy rekursiya, primitive rekursiya, umumiy rekursiya turli kuchga ega.
Corecursiya cheksiz strukturalar bilan ishlash imkonini beradi. Catamorphism va
anamorphism rekursiyaning umumiy sxemalarini taqdim etadi. Well-founded
rekursiya termination’ni kafolatlaydi.

Lazy evaluation hisoblashlarni kechiktirish va cheksiz strukturalar bilan ishlash
imkonini beradi. Thunk’lar va memoization lazy evaluation’ning asosiy
mexanizmlaridir. Strictness anotatsiyalari performance uchun muhim. Fusion
optimization oraliq strukturalarni olib tashlashga yordam beradi. Lazy evaluation
modulyarlik va kompozitsiya qobiliyatini oshiradi.

Parallel va concurrent funksiyalar zamonaviy multicore arxitekturalardan
foydalanish uchun zarur. Pure parallelizm determinizm kafolatini beradi. Futures,
actors, STM kabi abstraktsiyalar turli concurrency stsenariylari uchun mos.
MapReduce katta hajmdagi ma’lumotlarni parallel qayta ishlashning samarali
paradigmasidir. Formal verification race conditions va deadlock’larni oldini olishga
yordam beradi.

Umumiy xulosa: massiv funksiyalarining matematik tahlili va tuzilishi chuqur
nazariy asoslarga ega bo‘lib, zamonaviy dasturlash amaliyotida muhim rol o‘ynaydi.
Kategoriyalar nazariyasi, tip sistemalari, lambda hisob va funksional paradigma
birgalikda kuchli va xavfsiz abstraktsiyalarni yaratish imkonini beradi. Bu bilimlar
nafagat nazariy jihatdan qiziqarli, balki amaliy dasturlashda samarali, to‘g‘ri va
maintainable kod yozish uchun zarurdir.

Foydalanilgan adabiyotlar
1. Pierce B.C. Types and Programming Languages. MIT Press, 2002. 623 p.
2. Mac Lane S. Categories for the Working Mathematician, 2nd Edition. Springer,
1998. 314 p.
3. Bird R., de Moor O. Algebra of Programming. Prentice Hall, 1997. 312 p.

ISSN 2181-0842 | IMPACT FACTOR 4.525 109 @) e |

"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

4. Awodey S. Category Theory, 2nd Edition. Oxford University Press, 2010. 311
p.

5. Barendregt H.P. The Lambda Calculus: Its Syntax and Semantics. North
Holland, 1984. 621 p.

6. Wadler P. Theorems for free! // Functional Programming Languages and
Computer Architecture. 1989. P. 347-359.

7. Moggi E. Notions of computation and monads // Information and Computation.
1991. Vol. 93. No. 1. P. 55-92.

8. Milner R. A Theory of Type Polymorphism in Programming // Journal of
Computer and System Sciences. 1978. Vol. 17. No. 3. P. 348-375.

9. Hinze R., Jeuring J. Generic Haskell: Practice and Theory // Summer School
on Generic Programming. Springer, 2003. P. 1-56.

10. Gibbons J. Calculating Functional Programs // Algebraic and Coalgebraic
Methods in the Mathematics of Program Construction. Springer, 2002. P. 148-203.

11. Hutton G. Programming in Haskell, 2nd Edition. Cambridge University Press,
2016. 322 p.

12. Lipovaca M. Learn You a Haskell for Great Good! No Starch Press, 2011. 400
p.

13. Mejjer E., Fokkinga M., Paterson R. Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire // Functional Programming Languages and
Computer Architecture. 1991. P. 124-144.

14. Wadler P. Monads for functional programming // Advanced Functional
Programming. Springer, 1995. P. 24-52.

15. Bird R. Introduction to Functional Programming using Haskell, 2nd Edition.
Prentice Hall, 1998. 444 p.

ISSN 2181-0842 | IMPACT FACTOR 4.525 110 @) e |

