"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Ko‘p o‘lchovli massivlarning funksional bog‘liqliklari va
ularning matematik hamda hisoblash tadqiqotlaridagi
xususiyatlari

Gulbodom Oybek qizi Norqulova
BXU

Annotatsiya: Ushbu maqolada ko‘p oflchovli massivlarning funksional
bog‘ligliklari hamda matematik va hisoblash tadqiqotlaridagi o‘rni sistemali tahlil
qilingan. Massivlar orasidagi funksional munosabatlar, bog‘liqlik turlari va ularning
matematik ifodasi o‘rganilgan. Tadqiqotda massivlarning hisoblash murakkabligi,
algoritmik optimallik va samaradorlik masalalari ko‘rib chiqilgan. Chiziqli algebra,
differensial tenglamalar, optimallashtirish nazariyasi va statistik modellashtirish
kontekstida massivlarning roli tahlil qilingan. Zamonaviy ilmiy hisoblashlar,
ma’lumotlar tahlili va mashinali o‘rganish algoritmlarida massiv operatsiyalarining
qo‘llanilishi batafsil yoritilgan. Tadqiqot natijalari matematik modellashtirish va
hisoblash fanlarida massivlardan samarali foydalanish uchun nazariy va amaliy asos
yaratadi.

Kalit so‘zlar: funksional bog‘ligliklar, matematik modellashtirish, hisoblash
murakkabligi, chiziqli algebra, ragamli usullar, optimallashtirish, statistik tahlil,
algoritmik samaradorlik, ilmiy hisoblashlar, tensor operatsiyalari, massiv tahlili,
hisoblash tadqiqotlari, ma’lumotlar fanlari

Functional Dependencies of Multidimensional Arrays and
Their Characteristics in Mathematical and Computational
Research

Gulbodom Oybek qizi Norqulova
BIU

Abstract: This article presents a systematic analysis of the functional
dependencies of multidimensional arrays and their role in mathematical and
computational research. The functional relationships between arrays, types of
dependencies, and their mathematical representations are examined. The study
explores computational complexity, algorithmic optimality, and efficiency
considerations related to arrays. The role of arrays in linear algebra, differential
equations, optimization theory, and statistical modeling is analyzed. The application of
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array operations in modern scientific computing, data analysis, and machine learning
algorithms 1s discussed in detail. The results provide a theoretical and practical
foundation for the effective use of arrays in mathematical modeling and computational
sciences.

Keywords: functional dependencies, mathematical modeling, computational
complexity, linear algebra, numerical methods, optimization, statistical analysis,
algorithmic efficiency, scientific computing, tensor operations, array analysis,
computational research, data science

Kirish

Ko‘p o‘lchovli massivlar zamonaviy matematik va hisoblash tadqiqotlarida
markaziy o‘rinni egallaydi. Ular nafaqat ma’lumotlarni saqlash vositasi, balki
murakkab matematik ob’ektlar va hisoblash jarayonlarining tabiiy ifodasi hisoblanadi.
Massivlarning funksional bog‘ligliklari - bu massivlar orasidagi matematik
munosabatlar, transformatsiyalar va ularning xususiyatlarini tavsiflash tizimidir.

Funksional bog‘liglik tushunchasi keng ma’noga ega. Eng oddiy darajada, bu
massivlar orasidagi funktsional munosabat: bitta massiv boshqa massivning funksiyasi
sifatida ifodalanishi. Murakkabrog bog‘ligliklar matritsalar orasidagi chiziqli
munosabatlar, tensorlar orasidagi ko‘p chizigli bog‘lanishlar va differensial
tenglamalarning diskret approximatsiyalarini o‘z ichiga oladi.

Matematik tadqiqotlarda massivlar turli ob’ektlarni ifodalash uchun ishlatiladi.
Chiziqli algebrada vektorlar va matritsalar asosiy tushunchalar bo‘lib, ular chiziqli
transformatsiyalar, vektorli fazolar va xos qiymatlar nazariyasida muhim rol o‘ynaydi.
Raqgamli tahlilda massivlar funksiyalarni diskretlashtirish, differensial va integral
tenglamalarni yechish uchun zarur. Optimallashtirish nazariyasida parametrlar
vektorlar va matritsa ko‘rinishida ifodalanadi.

Hisoblash tadqiqotlari nuqtai nazaridan massivlar samaradorlikning asosiy
ko‘rsatkichlarini belgilaydi. Xotira tashkil etilishi, ma’lumotlarga murojaat namunasi,
parallellashtirish imkoniyati - barchasi massivlarning tuzilishi va wular ustida
bajariladigan operatsiyalarga bog‘liq. Hisoblash murakkabligi tahlili algoritmlarning
samaradorligini baholash va optimal yechimlarni topish uchun zarur.

Zamonaviy ilmiy dasturlash kutubxonalari (NumPy, SciPy, MATLAB, R)
massivlar bilan ishlash uchun keng imkoniyatlar taqdim etadi. Ular matematik
operatsiyalarni optimallashtiradi, parallel hisoblashni qo‘llab-quvvatlaydi va
murakkab algoritmlarni amalga oshirish uchun qulay interfeys beradi. Ma’lumotlar
fanlari va mashinali o‘rganishda tensorli operatsiyalar (TensorFlow, PyTorch)
massivlarning yuqori o‘lchovli umumlashtirilishiga asoslanadi.

Tadqiqotning maqsadi ko‘p o‘lchovli massivlarning funksional bog‘ligliklarini
chuqur o‘rganish, matematik va hisoblash tadqiqotlaridagi ularning rolini tahlil qilish
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va zamonaviy ilmiy hisoblashlarda samarali qo‘llash uchun nazariy asos yaratishdan
iborat. Tadqiqot ob’ekti sifatida massivlar orasidagi turli xil funksional munosabatlar,
ularning matematik xususiyatlari va hisoblash jihatlaridan samaradorligi tanlab olingan.

Asosiy qgism

Funksional bog‘ligliklarning asosiy turlari

Funksional bog‘liglik eng oddiy shaklda bitta massivning boshqa massivga
bog‘ligligini ifodalaydi. Agar B = f(A) bo‘lsa, B massiv A massivning funksiyasi
hisoblanadi. Bu bog‘liglik turli shakllarda bo‘lishi mumkin: element-wise (har bir
element alohida), strukturaviy (butun massiv) yoki murakkab transformatsiya orqali.

Chiziqli bog‘liqlik - eng muhim va keng tarqalgan tur. Agar y = Ax bo‘lsa, bu
yerda A - matritsa, X va y - vektorlar, chizigli bog‘liqlik mavjud. Xususiyatlari:
superposition prinsipi A(ax + Py) = aAx + BAy, nol vektorga nol akslantirish A(0) =
0. Chiziqli transformatsiyalar chiziqli algebra, differensial tenglamalar va ko‘plab
boshqa sohalarda asosiy rol o‘ynaydi.

Bilinear va multilinear bog‘ligliklar ikki yoki ko‘proq massivlar orasidagi
bog‘liglikni ifodalaydi. Bilinear forma B(x, y) - x va y bo‘yicha alohida chiziqli.
Masalan, matritsalarni ko‘paytirish C = AB bilinear: har bir A gatori va B ustuni
bo‘yicha chiziqli. Tensorli ko‘paytma multilinear operatsiya hisoblanadi.

Differensial bog‘ligliklar massivlar orasida hosilalar orqali ifodalanadi.
Differensial tenglamalar du/dt = F(u, t) diskretlashtirilganda, u(t) massiv sifatida
ifodalanadi va F massiv funksiyasi bo‘ladi. Ragamli integratsiya usullari (Eyler,
Runge-Kutta) massivlar orasidagi rekurrent munosabatlarni yaratadi.

Integral bog‘ligliklar bir massivning boshqasining integrali sifatida ifodalanishini
bildiradi. Diskret holatda: B[i] = Z; K][1,j] A[j], bu yerda K - integral yadro (kernel). Bu
konvolyutsiya operatsiyasining asosi bo‘lib, signallar qayta ishlash va tasvirlarni
filtrlashda qo‘llaniladi.

Statistik bog‘ligliklar massivlar orasidagi ehtimoliy munosabatlarni tavsiflaydi.
Korrelyatsiya, regressiya, ko‘p o‘zgaruvchili tagsimotlar - barchasi massivlar orqali
ifodalanadi. Kovariatsiya matritsasi tasodifiy vektorlar orasidagi bog‘liglikni to‘liq
tavsiflaydi: Cov(X, Y) =E[(X - E[X])(Y - E[Y]DT].

Topologik bog‘ligliklar massivlarning yaqinlik va uzluksizlik xususiyatlarini
tavsiflaydi. Metrik fazolarda d(A, B) - ikki massiv orasidagi masofa. Operator normasi
IIT|| - operator T ning "kuchlashish" darajasi. Bu tushunchalar konvergentsiya,
barqarorlik va approksimatsiya nazariyasida muhim.

Chiziqli algebra va matritsali operatsiyalar

Chiziqli algebra massivlarning funksional bog‘ligliklarini o‘rganishning asosiy
vositasi hisoblanadi. Vektorli fazolar V va W orasidagi chiziqli transformatsiya T: V
— W matritsa orqali ifodalanadi. Agar V =R»va W = R™ bo‘lsa, T matritsasi A € Rmx»
vay = Ax.
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Matritsalarni ko‘paytirish fundamental operatsiya: C = AB, bu yerda Ci = Z; Aj
Bi. Bu ikki chizigli transformatsiyaning kompozitsiyasini ifodalaydi: C = B o A.
Standart algoritm O(n?) murakkablikka ega. Strassen algoritmi O(n”2.807), lekin katta
n uchun samarali. Cache-optimized algoritmlar (BLAS) amaliy tizimharda keng
qo‘llaniladi.

Xos qiymatlar va xos vektorlar matritsaning fundamental xususiyatlaridir. Agar
Av =v bo‘lsa, A - xos qiymat, v - xos vektor. Xarakteristik polinom det(A - AI) =0
xos qiymatlarni beradi. Spektral yoyilma: agar A simmetrik bo‘lsa, A = QAQT, bu
yerda Q - ortogonal matritsa (xos vektorlar), A - diagonal (xos qiymatlar).

Singular qiymatlarga ajratish (SVD) har ganday matritsa uchun: A = UZVT. U va
V - ortogonal, £ - diagonal (singular qiymatlar). SVD ko‘plab qo‘llanmalarga ega:
psevdoteskari matritsa A" = VX'UT, matritsa rangi, eng yaxshi past-rangli
approksimatsiya. Principal Component Analysis (PCA) SVD ga asoslangan.

Chizigli tizimlar Ax = b ko‘plab muammolarning markazida. Yechish usullari:
to‘g‘ridan-to‘g‘ri (Gauss, LU, Cholesky) - O(n?), iterativ (Jacobi, Gauss-Seidel, CG) -
siyrak matritsalar uchun samarali. Prekonditsionerlash iterativ usullarni tezlashtiradi.
Krylov kichik fazolari (GMRES, BiCGSTAB) zamonavir yondashuv.

Matritsa norma va sharti ragami bargarorlik uchun muhim. Frobenius norma:
IA|_F = V(Z; ai?). Spektral norma: ||All> = omsx (eng katta singular qiymat). Sharti
raqami k(A) = [|A|| ||]A7"|| noto‘g‘ri qo‘yilganlikni o‘lchaydi. Agar k(A) katta bo‘lsa,
kichik xatoliklar katta natija xatolariga olib keladi.

Tensorlar (yuqori o‘lchovli massivlar) ko‘p chizigli algebrani talab qiladi.
Tensorni qisqartirish (contraction): Ci = Z; Aj By matritsalarni ko‘paytirishning
umumlashtirilishi. Tucker va CP tensorli yoyilmalari katta tensorlarni siqish imkonini
beradi. Tensor networks kvant mexanikasi va mashinali o‘rganishda qo‘llaniladi.

Differensial va integral operatorlar

Differensial operatorlar massivlar orasidagi infinitesimal bog‘ligliklarni
tavsiflaydi. Diskret hosilalar chekli farqlar orqali approksimatsiya qilinadi. Birinchi
hosila: f(x) = (f(x+h) - f(x-h))/(2h) (markaziy farq, O(h?) xatolik). Ikkinchi hosila:
£°(x) = (f(x+h) - 2f(x) + f(x-h))/h2.

Gradient Vf ko‘p o‘zgaruvchili funksiya uchun gisman hosilalar vektori: Vf =
(of/oxu, ..., Of/0x,). Diskret holatda chekli farqlar bilan approksimatsiya. Laplace
operatori Af = %; 0*f/0x;? diffuziya tenglamalarida muhim. Diskret Laplacian matritsasi
sifatida ifodalanadi.

Differensial tenglamalar (DE) massivlar orqali diskretlashtiriladi. Oddiy DE:
dy/dt = f(y, t). Diskretlashtirish: y {n+1} =y n+ h f(y _n, t n) (Eyler usuli). Yuqori
tartibli usullar (Runge-Kutta): y {n+1} =y n+h X;b; ki, bu yerda k; - oraliq bosqichlar.
Multistep usullar (Adams, BDF) bir nechta oldingi qiymatlardan foydalanadi.
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Qisman differensial tenglamalar (PDE) fazoviy va vaqt o‘zgaruvchilarini o‘z
ichiga oladi. Issiqlik tenglama: du/ot = o 0*u/0x?. Diskretlashtirish: meshni yaratish (x,
t) fazoda, chekli farqlar yoki chekli elementlar usuli. Natija - chizigli tizim yoki
rekurrent munosabat.

Integral operatorlar: (Kf)(x) = [ K(x, y) f(y) dy. Diskret analogi: (Kf); = X; Kj; fj -
matritsali ko‘paytirish. Fredholm tenglamalari: f = Kf + g. Volterra tenglamalari: f; =
¥<i Kij fj + gi (uchburchak matritsa). Yechish usullari: to‘g‘ridan-to‘g‘ri (kichik n
uchun), iterativ (katta n uchun).

Operator tenglamalari umumiy shaklda: Lu = f, bu yerda L - differensial yoki
integral operator. Weak formulatsiya (zaif shaklantirish): [ v Lu dx = [ v f dx barcha
test funksiyalar v uchun. Bu Galerkin usuli va chekli elementlar usulining asosi.
Diskretlashtirish matritsali tizimga olib keladi: Au = f.

Spektral wusullar yuqori tartibli approksimatsiya beradi. Funksiyani bazis
funksiyalari (Fourier, Chebyshev, Legendre) bo‘yicha yoyilma: u(x) = Z, ¢a ¢@n(X).
Koeffitsientlar c, vektori sifatida. Differensial operatorni matritsaga aylantirish va
algebraik tizimni yechish. Spektral usullar silliq funksiyalar uchun eksponensial
konvergentsiya beradi.

Optimallashtirish va variatsion masalalar

Optimallashtirish muammolari ko ‘pincha massivlar orqali ifodalanadi: min_x f(x),
bu yerda x € R» - parametrlar vektori. Gradient usullari: x {k+1} =x k- a_k Vf(x k).
Qadam uzunligi o, k line search yoki fixed step size orqali tanlanadi. Konvergentsiya
tezligi sharti raqomiga bog‘liq.

Nyuton usuli ikkinchi tartibli ma’lumotdan foydalanadi: x {k+1} = x k -
[H(x_k)]* Vi(x_k), bu yerda H - Hessian matritsasi. Kvadratik konvergentsiya, lekin
Hessian hisoblash gimmat (O(n?)). Kvazi-Nyuton usullari (BFGS, L-BFGS) Hessian
teskari approksimatsiyasini saqlab yangilaydi - O(n?) yoki O(n).

Cheklangan optimallashtirish: min f(x) s.t. g(x) = 0, h(x) < 0. Lagranj funksiyasi:
L(x, A, p) = f(x) + ATg(x) + uTh(x). Karush-Kuhn-Tucker (KKT) shartlari zaruriy: V_x
L=0,gx) =0, hx) <0, u>0, uTh(x) = 0. Ichki nuqta usullari, SQP (Sequential
Quadratic Programming) keng qo‘llaniladi.

Konveks optimallashtirish global minimumni kafolatlaydi. Agar f konveks va
cheklovlar konveks to‘plam hosil qilsa, har qanday lokal minimum globaldir. Chizigli
dasturlash: min c™x s.t. Ax < b - konveks. Simpleks usuli va ichki nuqta usullari
polinomial vaqtda yechadi. Kvadratik dasturlash: min 2xTQx + ¢™x s.t. Ax <b - Q
musbat yarimo‘q bo‘lsa konveks.

Variatsion masalalar funksional minimallash: min_u J[u] =] L(u, u’, x) dx. Eyler-
Lagranj tenglama: 0L/0u - d/dx(0L/0u’) = 0. Diskretlashtirish: u massiv sifatida, J[u]
— J(u) - chekli o‘lchovli funksiya. Optimallashtirish usullari qo‘llaniladi. PDE
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cheklangan  optimallashtirish (PDE-constrained optimization) - variatsion
masalalarning umumlashtirilishi.

Stoxastik optimallashtirish katta hajmli ma’lumotlar uchun. Stochastic Gradient
Descent (SGD): x_{k+1} = x k - o k Vf(x k), bu yerda f - f ning shovqinli
approksimatsiyasi (mini-batch gradient). Variance reduction usullari (SVRG, SAGA)
konvergentsiyani yaxshilaydi. Adam, RMSprop - adaptiv qadam usullari, chuqur
o‘rganishda mashhur.

Global optimallashtirish lokal minimumlar muammosini hal qilishga harakat
qiladi. Genetik algoritmlar, simulated annealing, particle swarm - metahevristika
usullar. Bayesian optimallashtirish - expensive funksiyalar uchun (masalan,
hyperparameter tuning). Convex relaxation - nokonveks muammoni konveks
approksimatsiya qilish.

Statistik modellashtirish va ma’lumotlar tahlili

Statistik modellashtirish massivlar orqali ma’lumotlar va parametrlarni ifodalaydi.
X - n x p ma’lumotlar matritsasi (n - namunalar, p - xususiyatlar). y - n o‘lchovli natija
vektori. Chiziqli regressiya: y = X3 + ¢, bu yerda B - p o‘Ichovli parametrlar vektori, €
- xatolar. Eng kichik kvadratlar: = (X™X)'XTy.

Ko‘p o‘zgaruvchili statistika: ma’lumotlar matritsasi X dan ko‘plab statistikalar
hisoblanadi. O‘rtacha vektor: | = (1/n) X; x;. Kovariatsiya matritsasi: £ = (1/(n-1)) i
xi - W(xi - W)T. Korrelyatsiya matritsasi: Rj = X / (oi oj). Bu matritsalar
ma’lumotlarning strukturasini tavsiflaydi.

Principal Component Analysis (PCA) - o‘lchamni kamaytirish usuli. Magsad: X
ni past o‘lchovli Y ga proyeksiya qilish. Y = XW, bu yerda W - proyeksiya matritsasi.
W ustunlari ¥ ning xos vektorlari (eng katta xos qiymatlarga mos). SVD orqali
hisoblash: X = UXVT, W = V. PCA ma’lumotlarni vizualizatsiya qilish va noise
filtrlash uchun ishlatiladi.

Klasterlashtirish ma’lumotlarni guruhlarga bo‘lish. K-means: har bir nuqta eng
yaqin markazga tayinlanadi. Markazlar: cx = (1/|Cy|) Zi€Ck x;. Iterativ algoritm: (1)
Tayinlash (assignment): har bir x; ni eng yaqin ck ga. (2) Yangilash: cc ni qayta
hisoblash. Magsad funksiya: min X Z;€Cx |[xi - ci||*. Lloyd algoritmi lokal minimumga
yaqinlashadi.

Klassifikatsiya: y = f(x), bu yerda y - diskret kategoriya. Logistic regressiya:
P(y=1|x) = o(B™x), bu yerda o(z) = 1/(1+e%) - sigmoid. Support Vector Machines
(SVM): max-margin classifier, yadro usullari (kernel trick) nonlinear chegaralar uchun.
Decision trees, random forests - ensemble usullar.

Vaqt qatorlari tahlili: {y:} - vaqt bo‘yicha kuzatishlar. Autoregression (AR): y;=
Y @i Vi T & Moving average (MA): y: = i 0; &~ + & ARIMA modeli - AR va MA
kombinatsiyasi. Matritsa shaklida: y = ®dy past + ¢, bu yerda ® - AR koeffitsientlari
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matritsasi. State-space models: x; = Ax1 + w; (holat), y; = Cx, + v; (kuzatish). Kalman
filter - optimal holat bahosi.

Bayesian tahlil parametrlar tagsimotini o‘rganadi. Prior tagsimot p(0), likelihood
p(y|0), posterior p(0]y) < p(y|0)p(0). Markov Chain Monte Carlo (MCMC) - posterior
dan namunalar olish. Gibbs sampling, Metropolis-Hastings - MCMC usullari.
Variational inference - posterior approksimatsiyasi optimallashtirish orqali.

Mashinali o‘rganish va neyron tarmoglar

Mashinali o‘rganish massivlarni keng qo‘llaydi. Supervised learning: (X, y)
ma’lumotlaridan f: X — y funksiyani o‘rganish. X - input massiv, y - output
vektor/skalar. Model parametrlari 6 optimallashtirish orqali topiladi: min_0 L(f 6(X),
y), bu yerda L - loss funksiyasi (masalan, mean squared error).

Neyron tarmoqlar qatlamli strukturaga ega. Har bir qatlam: h; = 6(W, hi-1 + by), bu
yerda W, - og‘irliklar matritsasi, by - bias vektori, ¢ - activation funksiyasi (sigmoid,
ReLU, tanh). Kirish ho = x, chiqish § = h_L. Forward pass - hisoblash, backward pass
(backpropagation) - gradientlarni hisoblash.

Backpropagation zanjir qoidasiga asoslangan. Loss L ni parametrlarga nisbatan
gradient: 0L/OW, = 0L/oh; - ohi/OW,. OL/0h, orqaga tarqaladi: 0L/oh;-1 = W,T (0L/ch; O
o’ (Wi hi-1 + by)), bu yerda © - element-wise ko‘paytirish. Avtomatik differentsiatsiya
(TensorFlow, PyTorch) bu jarayonni avtomatlashtiradi.

Convolutional Neural Networks (CNN) tasvirlar uchun. Konvolyutsiya qatlami:
(W * X)ij = Zimn Winn Xi+m,jn - mahalliy filterlar. Pooling qatlami: o‘lchamni kamaytirish
(max pooling, average pooling). CNN spatial ierarxiyani o‘rganadi: past darajali
xususiyatlar (edges) dan yuqori darajali (ob’ektlar) gacha.

Recurrent Neural Networks (RNN) ketma-ketliklar uchun. Holat: h = 6(Wx x; +
Wi he1 +b). Output: yi = W, h.. Long Short-Term Memory (LSTM) va Gated Recurrent
Unit (GRU) - vanishing gradient muammosini hal qiladi. Attention mexanizmi -
muhim qismlarga e’tibor, Transformer arxitekturasi - NLP da inqilob.

Tensor operatsiyalari chuqur o‘rganishda markaziy. Matritsa-vektor ko‘paytirish,
elementwise operatsiyalar, konvolyutsiya - barchasi tensorlarda. Efficient
implementation: BLAS, cuBLAS (GPU), cuDNN (deep learning). Automatic
differentiation orqali gradientlar hisoblanadi. Mixed precision training - tezlashtirish
uchun floatl6 va float32 ni1 birlashtirish.

Regularizatsiya overfitting‘ni oldini oladi. L2 regularization: L(0) = Lo(0) + A||0]%,
gradient descent 0 ga decay qo‘shadi. Dropout - training davomida tasodifiy
neyronlarni o‘chirish. Batch normalization - har bir qatlamda aktivatsiyalarni
normalizatsiya qilish, konvergentsiyani tezlashtiradi. Data augmentation - trening
ma’lumotlarini sun’iy oshirish (rotation, crop).

Hisoblash samaradorligi va parallel algoritmlar
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Hisoblash murakkabligi algoritmning samaradorligini o‘lchaydi. Vagqt
murakkabligi T(n) - operatsiyalar soni n o‘lchamli kirish uchun. Xotira murakkabligi
S(n) - zarur xotira hajmi. Big-O notation: O(f(n)) - yuqori chegara. Masalan,
matritsalarni ko‘paytirish O(n?), saralash O(n log n).

Cache samaradorligi zamonavir protsessorlarda muhim. Cache hierarchy: L1 (32-
64KB, 1-2 cycles), L2 (256KB-1MB, 10-20 cycles), L3 (8-64MB, 40-50 cycles), RAM
(GB, 100+ cycles). Cache-oblivious algoritmlar cache hajmini bilmagan holda
optimaldir. Blocking (tiling) - ma’lumotlarni kichik bloklarga bo‘lish, cache’da
sig‘adigan o‘lchamda.

Vektorizatsiya SIMD (Single Instruction Multiple Data) dan foydalanadi.
Zamonaviy protsessorlar bir vaqtning o‘zida 4-8 (AVX-256) yoki 8-16 (AVX-512)
float operatsiyalarni bajaradi. Compiler auto-vectorization, intrinsics (qo‘lda), yoki
high-level wrappers (NumPy). Loop tiling va strip mining vektorizatsiya uchun
looplarni tayyorlaydi.

Parallel algoritmlar multicore va GPU da ishlaydi. Shared memory parallelism:
OpenMP - CPU uchun, CUDA/OpenCL - GPU uchun. Distributed memory: MPI -
cluster’lar uchun. Data parallelism - bir xil operatsiya turli ma’lumotlarda (map). Task
parallelism - turli operatsiyalar parallel (pipeline).

Matrix multiplication parallel algoritmlari: Naive - har bir element parallel
(O(n*/P) processors P bilan). Cannon’s algorithm - 2D torus topology, O(n®/P).
SUMMA (Scalable Universal Matrix Multiplication Algorithm) - communication-
efficient. cuBLAS va CUBLAS GEMM GPU da highly optimized.

MapReduce katta hajmdagi ma’lumotlar uchun. Map bosqichi: har bir input
bo‘lakka funksiya qo‘llaniladi (parallel). Reduce bosqichi: natijalar agregatsiya
qilinadi. Hadoop, Spark - MapReduce tizimlar. Functionally: map f [xi, ..., Xn] =
[f(x1), ..., f(Xn)], reduce g z [x, ..., Xn] = g(Xn, ... g(X2, g(X1, 2))).

GPU hisoblashlari: NVIDIA GPU’larda minglab yadro (cores). CUDA
programming model: kernel - GPU’da parallel bajariladigan funksiya, thread hierarchy
- grid/block/thread. Memory hierarchy: global (slow, GB), shared (fast, KB per block),
registers (very fast, per thread). Coalesced memory access, occupancy optimization -
performance uchun kritik.

Xulosa

Ko‘p o‘lchovli massivlarning funksional bog‘ligliklari va matematik hamda
hisoblash tadqiqotlaridagi xususiyatlarini o‘rganish natijasida quyidagi asosiy
xulosalarga kelamiz.

Funksional bog‘ligliklar massivlar orasidagi murakkab matematikasiy
munosabatlarni tavsiflaydi. Chiziqli, bilinear, differensial, integral va statistik
bog‘ligliklar turli xil matematikasiy va amaliy kontekstlarda paydo bo‘ladi. Bu
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bog‘ligliklar massiv operatsiyalarini sistemalashtirish va umumlashtirish imkonini
beradi.

Chiziqli algebra massivlarning funksional tavsifining asosiy vositasidir. Matritsali
operatsiyalar, xos qiymatlar nazariyasi, SVD kabi fundamental tushunchalar ko‘plab
ilmiy hisoblashlarda qo‘llaniladi. Spektral tahlil matritsalarning chuqur xususiyatlarini
ochib beradi va ko‘plab qo‘llanmalarga ega.

Differensial va integral operatorlar massivlar orqali diskretlashtiriladi va raqamli
yechimlar topiladi. PDE, ODE yechish usullari chekli farqlar, chekli elementlar va
spektral usullarga asoslanadi. Bu usullar ilmiy va muhandislik hisoblashlarning asosini
tashkil etadi.

Optimallashtirish nazariyasi massiv parametrlarini topish va eng yaxshi
yechimlarni aniqlash uchun zarur. Gradient usullari, Nyuton va kvazi-Nyuton usullari,
konveks optimallashtirish keng qo‘llaniladi. Variatsion masalalar funksional
minimallashning diskret analoglariga olib keladi.

Statistik modellashtirish ma’lumotlar matritsalari va parametrlar vektorlari orqgali
amalga oshiriladi. Regressiya, PCA, klasterlashtirish, klassifikatsiya - barchasi chiziqli
algebra operatsiyalariga asoslanadi. Ko‘p o‘zgaruvchili statistika kovariatsiya va
korrelyatsiya matritsalarini o‘rganadi.

Mashinali o‘rganish va neyron tarmogqlar massivlar va tensorlar bilan intensiv
ishlaydi. Og‘irliklar matritsalari, aktivatsiyalar vektorlari, gradientlar - barchasi massiv
operatsiyalari orqali hisoblanadi. Backpropagation zanjir qoidasining matritsali shakli
hisoblanadi.

Hisoblash samaradorligi massiv operatsiyalarining amaliy jihatlaridan eng
muhimidir. Cache samaradorligi, vektorizatsiya, parallel hisoblash algoritmlarni
sezilarli tezlashtiradi. GPU hisoblashlari katta massivlar uchun 10-100x tezlashtirish
beradi.

Massivlarning funksional bog‘ligliklari nazariy va amaliy jihatdan chuqur
o‘rganilgan. Ular zamonavir ilmiy hisoblashlar, ma’lumotlar fanlari va mashinali
o‘rganishning asosini tashkil etadi. Matematik rigor va hisoblash samaradorligini
birlashtirish muvaffaqiyatli ilovalar yaratish uchun zarur.
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