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Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massivlarning funksional 

bog‘liqliklari hamda matematik va hisoblash tadqiqotlaridagi o‘rni sistemali tahlil 

qilingan. Massivlar orasidagi funksional munosabatlar, bog‘liqlik turlari va ularning 

matematik ifodasi o‘rganilgan. Tadqiqotda massivlarning hisoblash murakkabligi, 

algoritmik optimallik va samaradorlik masalalari ko‘rib chiqilgan. Chiziqli algebra, 

differensial tenglamalar, optimallashtirish nazariyasi va statistik modellashtirish 

kontekstida massivlarning roli tahlil qilingan. Zamonaviy ilmiy hisoblashlar, 

ma’lumotlar tahlili va mashinali o‘rganish algoritmlarida massiv operatsiyalarining 

qo‘llanilishi batafsil yoritilgan. Tadqiqot natijalari matematik modellashtirish va 

hisoblash fanlarida massivlardan samarali foydalanish uchun nazariy va amaliy asos 

yaratadi. 
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Abstract: This article presents a systematic analysis of the functional 

dependencies of multidimensional arrays and their role in mathematical and 

computational research. The functional relationships between arrays, types of 

dependencies, and their mathematical representations are examined. The study 

explores computational complexity, algorithmic optimality, and efficiency 

considerations related to arrays. The role of arrays in linear algebra, differential 

equations, optimization theory, and statistical modeling is analyzed. The application of 
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array operations in modern scientific computing, data analysis, and machine learning 

algorithms is discussed in detail. The results provide a theoretical and practical 

foundation for the effective use of arrays in mathematical modeling and computational 

sciences. 
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Kirish 

Ko‘p o‘lchovli massivlar zamonaviy matematik va hisoblash tadqiqotlarida 

markaziy o‘rinni egallaydi. Ular nafaqat ma’lumotlarni saqlash vositasi, balki 

murakkab matematik ob’ektlar va hisoblash jarayonlarining tabiiy ifodasi hisoblanadi. 

Massivlarning funksional bog‘liqliklari - bu massivlar orasidagi matematik 

munosabatlar, transformatsiyalar va ularning xususiyatlarini tavsiflash tizimidir. 

Funksional bog‘liqlik tushunchasi keng ma’noga ega. Eng oddiy darajada, bu 

massivlar orasidagi funktsional munosabat: bitta massiv boshqa massivning funksiyasi 

sifatida ifodalanishi. Murakkabrog bog‘liqliklar matritsalar orasidagi chiziqli 

munosabatlar, tensorlar orasidagi ko‘p chiziqli bog‘lanishlar va differensial 

tenglamalarning diskret approximatsiyalarini o‘z ichiga oladi. 

Matematik tadqiqotlarda massivlar turli ob’ektlarni ifodalash uchun ishlatiladi. 

Chiziqli algebrada vektorlar va matritsalar asosiy tushunchalar bo‘lib, ular chiziqli 

transformatsiyalar, vektorli fazolar va xos qiymatlar nazariyasida muhim rol o‘ynaydi. 

Raqamli tahlilda massivlar funksiyalarni diskretlashtirish, differensial va integral 

tenglamalarni yechish uchun zarur. Optimallashtirish nazariyasida parametrlar 

vektorlar va matritsa ko‘rinishida ifodalanadi. 

Hisoblash tadqiqotlari nuqtai nazaridan massivlar samaradorlikning asosiy 

ko‘rsatkichlarini belgilaydi. Xotira tashkil etilishi, ma’lumotlarga murojaat namunasi, 

parallellashtirish imkoniyati - barchasi massivlarning tuzilishi va ular ustida 

bajariladigan operatsiyalarga bog‘liq. Hisoblash murakkabligi tahlili algoritmlarning 

samaradorligini baholash va optimal yechimlarni topish uchun zarur. 

Zamonaviy ilmiy dasturlash kutubxonalari (NumPy, SciPy, MATLAB, R) 

massivlar bilan ishlash uchun keng imkoniyatlar taqdim etadi. Ular matematik 

operatsiyalarni optimallashtiradi, parallel hisoblashni qo‘llab-quvvatlaydi va 

murakkab algoritmlarni amalga oshirish uchun qulay interfeys beradi. Ma’lumotlar 

fanlari va mashinali o‘rganishda tensorli operatsiyalar (TensorFlow, PyTorch) 

massivlarning yuqori o‘lchovli umumlashtirilishiga asoslanadi. 

Tadqiqotning maqsadi ko‘p o‘lchovli massivlarning funksional bog‘liqliklarini 

chuqur o‘rganish, matematik va hisoblash tadqiqotlaridagi ularning rolini tahlil qilish 
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va zamonaviy ilmiy hisoblashlarda samarali qo‘llash uchun nazariy asos yaratishdan 

iborat. Tadqiqot ob’ekti sifatida massivlar orasidagi turli xil funksional munosabatlar, 

ularning matematik xususiyatlari va hisoblash jihatlaridan samaradorligi tanlab olingan. 

Asosiy qism 

Funksional bog‘liqliklarning asosiy turlari 

Funksional bog‘liqlik eng oddiy shaklda bitta massivning boshqa massivga 

bog‘liqligini ifodalaydi. Agar B = f(A) bo‘lsa, B massiv A massivning funksiyasi 

hisoblanadi. Bu bog‘liqlik turli shakllarda bo‘lishi mumkin: element-wise (har bir 

element alohida), strukturaviy (butun massiv) yoki murakkab transformatsiya orqali. 

Chiziqli bog‘liqlik - eng muhim va keng tarqalgan tur. Agar y = Ax bo‘lsa, bu 

yerda A - matritsa, x va y - vektorlar, chiziqli bog‘liqlik mavjud. Xususiyatlari: 

superposition prinsipi A(αx + βy) = αAx + βAy, nol vektorga nol akslantirish A(0) = 

0. Chiziqli transformatsiyalar chiziqli algebra, differensial tenglamalar va ko‘plab 

boshqa sohalarda asosiy rol o‘ynaydi. 

Bilinear va multilinear bog‘liqliklar ikki yoki ko‘proq massivlar orasidagi 

bog‘liqlikni ifodalaydi. Bilinear forma B(x, y) - x va y bo‘yicha alohida chiziqli. 

Masalan, matritsalarni ko‘paytirish C = AB bilinear: har bir A qatori va B ustuni 

bo‘yicha chiziqli. Tensorli ko‘paytma multilinear operatsiya hisoblanadi. 

Differensial bog‘liqliklar massivlar orasida hosilalar orqali ifodalanadi. 

Differensial tenglamalar du/dt = F(u, t) diskretlashtirilganda, u(t) massiv sifatida 

ifodalanadi va F massiv funksiyasi bo‘ladi. Raqamli integratsiya usullari (Eyler, 

Runge-Kutta) massivlar orasidagi rekurrent munosabatlarni yaratadi. 

Integral bog‘liqliklar bir massivning boshqasining integrali sifatida ifodalanishini 

bildiradi. Diskret holatda: B[i] = Σⱼ K[i,j] A[j], bu yerda K - integral yadro (kernel). Bu 

konvolyutsiya operatsiyasining asosi bo‘lib, signallar qayta ishlash va tasvirlarni 

filtrlashda qo‘llaniladi. 

Statistik bog‘liqliklar massivlar orasidagi ehtimoliy munosabatlarni tavsiflaydi. 

Korrelyatsiya, regressiya, ko‘p o‘zgaruvchili taqsimotlar - barchasi massivlar orqali 

ifodalanadi. Kovariatsiya matritsasi tasodifiy vektorlar orasidagi bog‘liqlikni to‘liq 

tavsiflaydi: Cov(X, Y) = E[(X - E[X])(Y - E[Y])ᵀ]. 

Topologik bog‘liqliklar massivlarning yaqinlik va uzluksizlik xususiyatlarini 

tavsiflaydi. Metrik fazolarda d(A, B) - ikki massiv orasidagi masofa. Operator normasi 

||T|| - operator T ning "kuchlashish" darajasi. Bu tushunchalar konvergentsiya, 

barqarorlik va approksimatsiya nazariyasida muhim. 

Chiziqli algebra va matritsali operatsiyalar 

Chiziqli algebra massivlarning funksional bog‘liqliklarini o‘rganishning asosiy 

vositasi hisoblanadi. Vektorli fazolar V va W orasidagi chiziqli transformatsiya T: V 

→ W matritsa orqali ifodalanadi. Agar V = ℝⁿ va W = ℝᵐ bo‘lsa, T matritsasi A ∈ ℝᵐˣⁿ 

va y = Ax. 
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Matritsalarni ko‘paytirish fundamental operatsiya: C = AB, bu yerda Cᵢₖ = Σⱼ Aᵢⱼ 

Bⱼₖ. Bu ikki chiziqli transformatsiyaning kompozitsiyasini ifodalaydi: C = B ∘ A. 

Standart algoritm O(n³) murakkablikka ega. Strassen algoritmi O(n^2.807), lekin katta 

n uchun samarali. Cache-optimized algoritmlar (BLAS) amaliy tizimharda keng 

qo‘llaniladi. 

Xos qiymatlar va xos vektorlar matritsaning fundamental xususiyatlaridir. Agar 

Av = λv bo‘lsa, λ - xos qiymat, v - xos vektor. Xarakteristik polinom det(A - λI) = 0 

xos qiymatlarni beradi. Spektral yoyilma: agar A simmetrik bo‘lsa, A = QΛQᵀ, bu 

yerda Q - ortogonal matritsa (xos vektorlar), Λ - diagonal (xos qiymatlar). 

Singular qiymatlarga ajratish (SVD) har qanday matritsa uchun: A = UΣVᵀ. U va 

V - ortogonal, Σ - diagonal (singular qiymatlar). SVD ko‘plab qo‘llanmalarga ega: 

psevdoteskari matritsa A⁺ = VΣ⁺Uᵀ, matritsa rangi, eng yaxshi past-rangli 

approksimatsiya. Principal Component Analysis (PCA) SVD ga asoslangan. 

Chiziqli tizimlar Ax = b ko‘plab muammolarning markazida. Yechish usullari: 

to‘g‘ridan-to‘g‘ri (Gauss, LU, Cholesky) - O(n³), iterativ (Jacobi, Gauss-Seidel, CG) - 

siyrak matritsalar uchun samarali. Prekonditsionerlash iterativ usullarni tezlashtiradi. 

Krylov kichik fazolari (GMRES, BiCGSTAB) zamonavir yondashuv. 

Matritsa norma va sharti raqami barqarorlik uchun muhim. Frobenius norma: 

||A||_F = √(Σᵢⱼ aᵢⱼ²). Spektral norma: ||A||₂ = σₘₐₓ (eng katta singular qiymat). Sharti 

raqami κ(A) = ||A|| ||A⁻¹|| noto‘g‘ri qo‘yilganlikni o‘lchaydi. Agar κ(A) katta bo‘lsa, 

kichik xatoliklar katta natija xatolariga olib keladi. 

Tensorlar (yuqori o‘lchovli massivlar) ko‘p chiziqli algebrani talab qiladi. 

Tensorni qisqartirish (contraction): Cᵢₖ = Σⱼ Aᵢⱼ Bⱼₖ matritsalarni ko‘paytirishning 

umumlashtirilishi. Tucker va CP tensorli yoyilmalari katta tensorlarni siqish imkonini 

beradi. Tensor networks kvant mexanikasi va mashinali o‘rganishda qo‘llaniladi. 

Differensial va integral operatorlar 

Differensial operatorlar massivlar orasidagi infinitesimal bog‘liqliklarni 

tavsiflaydi. Diskret hosilalar chekli farqlar orqali approksimatsiya qilinadi. Birinchi 

hosila: f’(x) ≈ (f(x+h) - f(x-h))/(2h) (markaziy farq, O(h²) xatolik). Ikkinchi hosila: 

f’’(x) ≈ (f(x+h) - 2f(x) + f(x-h))/h². 

Gradient ∇f ko‘p o‘zgaruvchili funksiya uchun qisman hosilalar vektori: ∇f = 

(∂f/∂x₁, ..., ∂f/∂xₙ). Diskret holatda chekli farqlar bilan approksimatsiya. Laplace 

operatori Δf = Σᵢ ∂²f/∂xᵢ² diffuziya tenglamalarida muhim. Diskret Laplacian matritsasi 

sifatida ifodalanadi. 

Differensial tenglamalar (DE) massivlar orqali diskretlashtiriladi. Oddiy DE: 

dy/dt = f(y, t). Diskretlashtirish: y_{n+1} = y_n + h f(y_n, t_n) (Eyler usuli). Yuqori 

tartibli usullar (Runge-Kutta): y_{n+1} = y_n + h Σᵢ bᵢ kᵢ, bu yerda kᵢ - oraliq bosqichlar. 

Multistep usullar (Adams, BDF) bir nechta oldingi qiymatlardan foydalanadi. 
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Qisman differensial tenglamalar (PDE) fazoviy va vaqt o‘zgaruvchilarini o‘z 

ichiga oladi. Issiqlik tenglama: ∂u/∂t = α ∂²u/∂x². Diskretlashtirish: meshni yaratish (x, 

t) fazoda, chekli farqlar yoki chekli elementlar usuli. Natija - chiziqli tizim yoki 

rekurrent munosabat. 

Integral operatorlar: (Kf)(x) = ∫ K(x, y) f(y) dy. Diskret analogi: (Kf)ᵢ = Σⱼ Kᵢⱼ fⱼ - 

matritsali ko‘paytirish. Fredholm tenglamalari: f = Kf + g. Volterra tenglamalari: fᵢ = 

Σⱼ≤ᵢ Kᵢⱼ fⱼ + gᵢ (uchburchak matritsa). Yechish usullari: to‘g‘ridan-to‘g‘ri (kichik n 

uchun), iterativ (katta n uchun). 

Operator tenglamalari umumiy shaklda: Lu = f, bu yerda L - differensial yoki 

integral operator. Weak formulatsiya (zaif shaklantirish): ∫ v Lu dx = ∫ v f dx barcha 

test funksiyalar v uchun. Bu Galerkin usuli va chekli elementlar usulining asosi. 

Diskretlashtirish matritsali tizimga olib keladi: Au = f. 

Spektral usullar yuqori tartibli approksimatsiya beradi. Funksiyani bazis 

funksiyalari (Fourier, Chebyshev, Legendre) bo‘yicha yoyilma: u(x) = Σₙ cₙ φₙ(x). 

Koeffitsientlar cₙ vektori sifatida. Differensial operatorni matritsaga aylantirish va 

algebraik tizimni yechish. Spektral usullar silliq funksiyalar uchun eksponensial 

konvergentsiya beradi. 

Optimallashtirish va variatsion masalalar 

Optimallashtirish muammolari ko‘pincha massivlar orqali ifodalanadi: min_x f(x), 

bu yerda x ∈ ℝⁿ - parametrlar vektori. Gradient usullari: x_{k+1} = x_k - α_k ∇f(x_k). 

Qadam uzunligi α_k line search yoki fixed step size orqali tanlanadi. Konvergentsiya 

tezligi sharti raqomiga bog‘liq. 

Nyuton usuli ikkinchi tartibli ma’lumotdan foydalanadi: x_{k+1} = x_k - 

[H(x_k)]⁻¹ ∇f(x_k), bu yerda H - Hessian matritsasi. Kvadratik konvergentsiya, lekin 

Hessian hisoblash qimmat (O(n³)). Kvazi-Nyuton usullari (BFGS, L-BFGS) Hessian 

teskari approksimatsiyasini saqlab yangilaydi - O(n²) yoki O(n). 

Cheklangan optimallashtirish: min f(x) s.t. g(x) = 0, h(x) ≤ 0. Lagranj funksiyasi: 

L(x, λ, μ) = f(x) + λᵀg(x) + μᵀh(x). Karush-Kuhn-Tucker (KKT) shartlari zaruriy: ∇_x 

L = 0, g(x) = 0, h(x) ≤ 0, μ ≥ 0, μᵀh(x) = 0. Ichki nuqta usullari, SQP (Sequential 

Quadratic Programming) keng qo‘llaniladi. 

Konveks optimallashtirish global minimumni kafolatlaydi. Agar f konveks va 

cheklovlar konveks to‘plam hosil qilsa, har qanday lokal minimum globaldir. Chiziqli 

dasturlash: min cᵀx s.t. Ax ≤ b - konveks. Simpleks usuli va ichki nuqta usullari 

polinomial vaqtda yechadi. Kvadratik dasturlash: min ½xᵀQx + cᵀx s.t. Ax ≤ b - Q 

musbat yarimo‘q bo‘lsa konveks. 

Variatsion masalalar funksional minimallash: min_u J[u] = ∫ L(u, u’, x) dx. Eyler-

Lagranj tenglama: ∂L/∂u - d/dx(∂L/∂u’) = 0. Diskretlashtirish: u massiv sifatida, J[u] 

→ J(u) - chekli o‘lchovli funksiya. Optimallashtirish usullari qo‘llaniladi. PDE 
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cheklangan optimallashtirish (PDE-constrained optimization) - variatsion 

masalalarning umumlashtirilishi. 

Stoxastik optimallashtirish katta hajmli ma’lumotlar uchun. Stochastic Gradient 

Descent (SGD): x_{k+1} = x_k - α_k ∇f(̃x_k), bu yerda f ̃ - f ning shovqinli 

approksimatsiyasi (mini-batch gradient). Variance reduction usullari (SVRG, SAGA) 

konvergentsiyani yaxshilaydi. Adam, RMSprop - adaptiv qadam usullari, chuqur 

o‘rganishda mashhur. 

Global optimallashtirish lokal minimumlar muammosini hal qilishga harakat 

qiladi. Genetik algoritmlar, simulated annealing, particle swarm - metahevristika 

usullar. Bayesian optimallashtirish - expensive funksiyalar uchun (masalan, 

hyperparameter tuning). Convex relaxation - nokonveks muammoni konveks 

approksimatsiya qilish. 

Statistik modellashtirish va ma’lumotlar tahlili 

Statistik modellashtirish massivlar orqali ma’lumotlar va parametrlarni ifodalaydi. 

X - n × p ma’lumotlar matritsasi (n - namunalar, p - xususiyatlar). y - n o‘lchovli natija 

vektori. Chiziqli regressiya: y = Xβ + ε, bu yerda β - p o‘lchovli parametrlar vektori, ε 

- xatolar. Eng kichik kvadratlar: β̂ = (XᵀX)⁻¹Xᵀy. 

Ko‘p o‘zgaruvchili statistika: ma’lumotlar matritsasi X dan ko‘plab statistikalar 

hisoblanadi. O‘rtacha vektor: μ ̂= (1/n) Σᵢ xᵢ. Kovariatsiya matritsasi: Σ ̂= (1/(n-1)) Σᵢ 

(xᵢ - μ̂)(xᵢ - μ̂)ᵀ. Korrelyatsiya matritsasi: Rᵢⱼ = Σᵢⱼ / (σᵢ σⱼ). Bu matritsalar 

ma’lumotlarning strukturasini tavsiflaydi. 

Principal Component Analysis (PCA) - o‘lchamni kamaytirish usuli. Maqsad: X 

ni past o‘lchovli Y ga proyeksiya qilish. Y = XW, bu yerda W - proyeksiya matritsasi. 

W ustunlari Σ̂ ning xos vektorlari (eng katta xos qiymatlarga mos). SVD orqali 

hisoblash: X = UΣVᵀ, W = V. PCA ma’lumotlarni vizualizatsiya qilish va noise 

filtrlash uchun ishlatiladi. 

Klasterlashtirish ma’lumotlarni guruhlarga bo‘lish. K-means: har bir nuqta eng 

yaqin markazga tayinlanadi. Markazlar: cₖ = (1/|Cₖ|) Σᵢ∈Cₖ xᵢ. Iterativ algoritm: (1) 

Tayinlash (assignment): har bir xᵢ ni eng yaqin cₖ ga. (2) Yangilash: cₖ ni qayta 

hisoblash. Maqsad funksiya: min Σₖ Σᵢ∈Cₖ ||xᵢ - cₖ||². Lloyd algoritmi lokal minimumga 

yaqinlashadi. 

Klassifikatsiya: y = f(x), bu yerda y - diskret kategoriya. Logistic regressiya: 

P(y=1|x) = σ(βᵀx), bu yerda σ(z) = 1/(1+e⁻ᶻ) - sigmoid. Support Vector Machines 

(SVM): max-margin classifier, yadro usullari (kernel trick) nonlinear chegaralar uchun. 

Decision trees, random forests - ensemble usullar. 

Vaqt qatorlari tahlili: {yₜ} - vaqt bo‘yicha kuzatishlar. Autoregression (AR): yₜ = 

Σᵢ φᵢ yₜ₋ᵢ + εₜ. Moving average (MA): yₜ = Σᵢ θᵢ εₜ₋ᵢ + εₜ. ARIMA modeli - AR va MA 

kombinatsiyasi. Matritsa shaklida: y = Φy_past + ε, bu yerda Φ - AR koeffitsientlari 
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matritsasi. State-space models: xₜ = Axₜ₋₁ + wₜ (holat), yₜ = Cxₜ + vₜ (kuzatish). Kalman 

filter - optimal holat bahosi. 

Bayesian tahlil parametrlar taqsimotini o‘rganadi. Prior taqsimot p(θ), likelihood 

p(y|θ), posterior p(θ|y) ∝ p(y|θ)p(θ). Markov Chain Monte Carlo (MCMC) - posterior 

dan namunalar olish. Gibbs sampling, Metropolis-Hastings - MCMC usullari. 

Variational inference - posterior approksimatsiyasi optimallashtirish orqali. 

Mashinali o‘rganish va neyron tarmoqlar 

Mashinali o‘rganish massivlarni keng qo‘llaydi. Supervised learning: (X, y) 

ma’lumotlaridan f: X → y funksiyani o‘rganish. X - input massiv, y - output 

vektor/skalar. Model parametrlari θ optimallashtirish orqali topiladi: min_θ L(f_θ(X), 

y), bu yerda L - loss funksiyasi (masalan, mean squared error). 

Neyron tarmoqlar qatlamli strukturaga ega. Har bir qatlam: hₗ = σ(Wₗ hₗ₋₁ + bₗ), bu 

yerda Wₗ - og‘irliklar matritsasi, bₗ - bias vektori, σ - activation funksiyasi (sigmoid, 

ReLU, tanh). Kirish h₀ = x, chiqish ŷ = h_L. Forward pass - hisoblash, backward pass 

(backpropagation) - gradientlarni hisoblash. 

Backpropagation zanjir qoidasiga asoslangan. Loss L ni parametrlarga nisbatan 

gradient: ∂L/∂Wₗ = ∂L/∂hₗ · ∂hₗ/∂Wₗ. ∂L/∂hₗ orqaga tarqaladi: ∂L/∂hₗ₋₁ = Wₗᵀ (∂L/∂hₗ ⊙ 

σ’(Wₗ hₗ₋₁ + bₗ)), bu yerda ⊙ - element-wise ko‘paytirish. Avtomatik differentsiatsiya 

(TensorFlow, PyTorch) bu jarayonni avtomatlashtiradi. 

Convolutional Neural Networks (CNN) tasvirlar uchun. Konvolyutsiya qatlami: 

(W * x)ᵢⱼ = Σₘₙ Wₘₙ xᵢ₊ₘ,ⱼ₊ₙ - mahalliy filterlar. Pooling qatlami: o‘lchamni kamaytirish 

(max pooling, average pooling). CNN spatial ierarxiyani o‘rganadi: past darajali 

xususiyatlar (edges) dan yuqori darajali (ob’ektlar) gacha. 

Recurrent Neural Networks (RNN) ketma-ketliklar uchun. Holat: hₜ = σ(Wₓ xₜ + 

Wₕ hₜ₋₁ + b). Output: yₜ = Wᵧ hₜ. Long Short-Term Memory (LSTM) va Gated Recurrent 

Unit (GRU) - vanishing gradient muammosini hal qiladi. Attention mexanizmi - 

muhim qismlarga e’tibor, Transformer arxitekturasi - NLP da inqilob. 

Tensor operatsiyalari chuqur o‘rganishda markaziy. Matritsa-vektor ko‘paytirish, 

elementwise operatsiyalar, konvolyutsiya - barchasi tensorlarda. Efficient 

implementation: BLAS, cuBLAS (GPU), cuDNN (deep learning). Automatic 

differentiation orqali gradientlar hisoblanadi. Mixed precision training - tezlashtirish 

uchun float16 va float32 ni birlashtirish. 

Regularizatsiya overfitting‘ni oldini oladi. L2 regularization: L(θ) = L₀(θ) + λ||θ||², 

gradient descent θ ga decay qo‘shadi. Dropout - training davomida tasodifiy 

neyronlarni o‘chirish. Batch normalization - har bir qatlamda aktivatsiyalarni 

normalizatsiya qilish, konvergentsiyani tezlashtiradi. Data augmentation - trening 

ma’lumotlarini sun’iy oshirish (rotation, crop). 

Hisoblash samaradorligi va parallel algoritmlar 
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Hisoblash murakkabligi algoritmning samaradorligini o‘lchaydi. Vaqt 

murakkabligi T(n) - operatsiyalar soni n o‘lchamli kirish uchun. Xotira murakkabligi 

S(n) - zarur xotira hajmi. Big-O notation: O(f(n)) - yuqori chegara. Masalan, 

matritsalarni ko‘paytirish O(n³), saralash O(n log n). 

Cache samaradorligi zamonavir protsessorlarda muhim. Cache hierarchy: L1 (32-

64KB, 1-2 cycles), L2 (256KB-1MB, 10-20 cycles), L3 (8-64MB, 40-50 cycles), RAM 

(GB, 100+ cycles). Cache-oblivious algoritmlar cache hajmini bilmagan holda 

optimaldir. Blocking (tiling) - ma’lumotlarni kichik bloklarga bo‘lish, cache’da 

sig‘adigan o‘lchamda. 

Vektorizatsiya SIMD (Single Instruction Multiple Data) dan foydalanadi. 

Zamonaviy protsessorlar bir vaqtning o‘zida 4-8 (AVX-256) yoki 8-16 (AVX-512) 

float operatsiyalarni bajaradi. Compiler auto-vectorization, intrinsics (qo‘lda), yoki 

high-level wrappers (NumPy). Loop tiling va strip mining vektorizatsiya uchun 

looplarni tayyorlaydi. 

Parallel algoritmlar multicore va GPU da ishlaydi. Shared memory parallelism: 

OpenMP - CPU uchun, CUDA/OpenCL - GPU uchun. Distributed memory: MPI - 

cluster’lar uchun. Data parallelism - bir xil operatsiya turli ma’lumotlarda (map). Task 

parallelism - turli operatsiyalar parallel (pipeline). 

Matrix multiplication parallel algoritmlari: Naive - har bir element parallel 

(O(n³/P) processors P bilan). Cannon’s algorithm - 2D torus topology, O(n³/P). 

SUMMA (Scalable Universal Matrix Multiplication Algorithm) - communication-

efficient. cuBLAS va CUBLAS_GEMM GPU da highly optimized. 

MapReduce katta hajmdagi ma’lumotlar uchun. Map bosqichi: har bir input 

bo‘lakka funksiya qo‘llaniladi (parallel). Reduce bosqichi: natijalar agregatsiya 

qilinadi. Hadoop, Spark - MapReduce tizimlar. Functionally: map f [x₁, ..., xₙ] = 

[f(x₁), ..., f(xₙ)], reduce g z [x₁, ..., xₙ] = g(xₙ, ... g(x₂, g(x₁, z))). 

GPU hisoblashlari: NVIDIA GPU’larda minglab yadro (cores). CUDA 

programming model: kernel - GPU’da parallel bajariladigan funksiya, thread hierarchy 

- grid/block/thread. Memory hierarchy: global (slow, GB), shared (fast, KB per block), 

registers (very fast, per thread). Coalesced memory access, occupancy optimization - 

performance uchun kritik. 

Xulosa 

Ko‘p o‘lchovli massivlarning funksional bog‘liqliklari va matematik hamda 

hisoblash tadqiqotlaridagi xususiyatlarini o‘rganish natijasida quyidagi asosiy 

xulosalarga kelamiz. 

Funksional bog‘liqliklar massivlar orasidagi murakkab matematikasiy 

munosabatlarni tavsiflaydi. Chiziqli, bilinear, differensial, integral va statistik 

bog‘liqliklar turli xil matematikasiy va amaliy kontekstlarda paydo bo‘ladi. Bu 
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bog‘liqliklar massiv operatsiyalarini sistemalashtirish va umumlashtirish imkonini 

beradi. 

Chiziqli algebra massivlarning funksional tavsifining asosiy vositasidir. Matritsali 

operatsiyalar, xos qiymatlar nazariyasi, SVD kabi fundamental tushunchalar ko‘plab 

ilmiy hisoblashlarda qo‘llaniladi. Spektral tahlil matritsalarning chuqur xususiyatlarini 

ochib beradi va ko‘plab qo‘llanmalarga ega. 

Differensial va integral operatorlar massivlar orqali diskretlashtiriladi va raqamli 

yechimlar topiladi. PDE, ODE yechish usullari chekli farqlar, chekli elementlar va 

spektral usullarga asoslanadi. Bu usullar ilmiy va muhandislik hisoblashlarning asosini 

tashkil etadi. 

Optimallashtirish nazariyasi massiv parametrlarini topish va eng yaxshi 

yechimlarni aniqlash uchun zarur. Gradient usullari, Nyuton va kvazi-Nyuton usullari, 

konveks optimallashtirish keng qo‘llaniladi. Variatsion masalalar funksional 

minimallashning diskret analoglariga olib keladi. 

Statistik modellashtirish ma’lumotlar matritsalari va parametrlar vektorlari orqali 

amalga oshiriladi. Regressiya, PCA, klasterlashtirish, klassifikatsiya - barchasi chiziqli 

algebra operatsiyalariga asoslanadi. Ko‘p o‘zgaruvchili statistika kovariatsiya va 

korrelyatsiya matritsalarini o‘rganadi. 

Mashinali o‘rganish va neyron tarmoqlar massivlar va tensorlar bilan intensiv 

ishlaydi. Og‘irliklar matritsalari, aktivatsiyalar vektorlari, gradientlar - barchasi massiv 

operatsiyalari orqali hisoblanadi. Backpropagation zanjir qoidasining matritsali shakli 

hisoblanadi. 

Hisoblash samaradorligi massiv operatsiyalarining amaliy jihatlaridan eng 

muhimidir. Cache samaradorligi, vektorizatsiya, parallel hisoblash algoritmlarni 

sezilarli tezlashtiradi. GPU hisoblashlari katta massivlar uchun 10-100x tezlashtirish 

beradi. 

Massivlarning funksional bog‘liqliklari nazariy va amaliy jihatdan chuqur 

o‘rganilgan. Ular zamonavir ilmiy hisoblashlar, ma’lumotlar fanlari va mashinali 

o‘rganishning asosini tashkil etadi. Matematik rigor va hisoblash samaradorligini 

birlashtirish muvaffaqiyatli ilovalar yaratish uchun zarur. 
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