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Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massiv funksiyalarining asosiy 

xususiyatlari, matematik tavsiflari va amaliy masalalarni yechishdagi ahamiyati 

kompleks tadqiq qilingan. Massiv funksiyalarining tizimli tasnifi, ularning algebraik 

va analitik xossalari, kompozitsiya qoidalari va transformatsiya mexanizmlari batafsil 

o‘rganilgan. Tadqiqotda funksiyalarning chiziqlilik, davomiylik, differensiallanish va 

optimallik xususiyatlari tahlil qilingan. Ilmiy hisoblashlar, muhandislik masalalari, 

ma’lumotlar tahlili, tasvirlarni qayta ishlash, optimallash nazariyasi va mashinali 

o‘rganishda massiv funksiyalarining qo‘llanilishi ko‘rsatilgan. Funksiyalarning 

hisoblash murakkabligi, xotira samaradorligi va parallel bajarilish imkoniyatlari 

baholangan. Tadqiqot natijalari zamonaviy dasturlash amaliyotida massiv 

funksiyalaridan samarali foydalanish va murakkab matematik-amaliy masalalarni 

yechish uchun nazariy va metodologik asos yaratadi. 
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Abstract: This article provides a comprehensive study of the fundamental 

properties of multidimensional array functions, their mathematical characterization, 

and their importance in solving applied and mathematical problems. The systematic 

classification of array functions, their algebraic and analytical properties, composition 

rules, and transformation mechanisms are examined in detail. The study analyzes key 

characteristics of functions such as linearity, continuity, differentiability, and 

optimality. Applications of array functions in scientific computing, engineering 

problems, data analysis, image processing, optimization theory, and machine learning 

are presented. The computational complexity, memory efficiency, and parallel 
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execution capabilities of the functions are evaluated. The findings establish a 

theoretical and methodological foundation for the effective use of array functions in 

modern programming practice and for solving complex mathematical-applied 

problems. 
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Kirish 

Ko‘p o‘lchovli massiv funksiyalari zamonaviy matematik va amaliy fanlarning 

markaziy tushunchalaridan biri hisoblanadi. Ular abstrakt matematik ob’ektlarni 

konkret hisoblash operatsiyalariga bog‘lovchi ko‘prik vazifasini o‘taydi. Massiv 

funksiyalari nafaqat ma’lumotlarni transformatsiya qilish vositasi, balki murakkab 

matematik munosabatlarni ifodalash va amaliy masalalarni yechishning samarali usuli 

hisoblanadi. 

Massiv funksiyalarining xususiyatlari bir necha jihatdan muhimdir. Birinchidan, 

matematik jihatdan ular funksional tahlil, chiziqli algebra va operator nazariyasining 

konkret namunalarini beradi. Ikkinchidan, hisoblash nuqtai nazaridan ular algoritm 

samaradorligi, xotira boshqaruvi va parallellashtirish imkoniyatlarini belgilaydi. 

Uchinchidan, amaliy jihatdan ular real dunyo masalalarini modellashtirish va yechish 

vositasi hisoblanadi. 

Matematik masalalarni yechishda massiv funksiyalari muhim rol o‘ynaydi. 

Chiziqli tenglamalar tizimini yechish, xos qiymatlarni topish, differensial 

tenglamalarni raqamli integratsiya qilish, optimallashtirish masalalari - barchasida 

massiv operatsiyalari asosiy vosita hisoblanadi. Chiziqli algebra apparati matritsalar va 

vektorlar orqali ifodalanadi va massiv funksiyalari bu ob’ektlar ustida ishlaydi. 

Amaliy masalalarda massiv funksiyalarining roli yanada kengroqdir. Muhandislik 

hisoblashlarda strukturalarni tahlil qilish, issiqlik tarqalishi, suyuqlik dinamikasi kabi 

jarayonlarni modellashtirish massivlar orqali amalga oshiriladi. Ma’lumotlar fanida 

katta hajmdagi ma’lumotlarni qayta ishlash, tahlil qilish va vizualizatsiya qilish uchun 

massiv operatsiyalari zarur. Tasvirlarni qayta ishlashda har bir piksel massiv elementi 

sifatida qaraladi va filtrlash, transformatsiya, segmentatsiya kabi operatsiyalar massiv 

funksiyalari orqali bajariladi. 

Mashinali o‘rganish va sun’iy intellektda massiv funksiyalari markaziy o‘rinni 

egallaydi. Neyron tarmoqlar og‘irliklari matritsalar, aktivatsiyalar vektorlar sifatida 

saqlanadi. Forward propagation va backpropagation jarayonlari ketma-ket massiv 

operatsiyalari sifatida amalga oshiriladi. Tensorli operatsiyalar chuqur o‘rganishning 

asosini tashkil etadi. 
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Funksiyalarning xususiyatlarini tushunish ularni to‘g‘ri qo‘llash uchun zarur. 

Chiziqlilik xossasi superposition prinsipini beradi va ko‘plab soddalashtirishlarga olib 

keladi. Davomiylik xossasi kichik kirishdagi o‘zgarishlar kichik chiqishdagi 

o‘zgarishlarga olib kelishini kafolatlaydi. Differensiallanish xossasi gradient usullarini 

qo‘llash imkonini beradi va optimallashtirish algoritmlarining asosini tashkil etadi. 

Tadqiqotning maqsadi ko‘p o‘lchovli massiv funksiyalarining asosiy 

xususiyatlarini sistemali tahlil qilish, ularning matematik asoslarini ochib berish va 

matematik hamda amaliy masalalarni yechishdagi rolini ko‘rsatishdan iborat. Tadqiqot 

ob’ekti sifatida turli toifadagi massiv funksiyalari, ularning xususiyatlari va real 

masalalardagi qo‘llanmalari tanlab olingan. 

Asosiy qism 

Massiv funksiyalarining asosiy toifalari va xususiyatlari 

Massiv funksiyalari umumiy shaklda f: D → C ko‘rinishda ifodalanadi, bu yerda 

D - domen (kirish massivlari to‘plami), C - kodomen (chiqish massivlari to‘plami). 

Funksiyaning turi kirish va chiqish massivlarining o‘lchamlari, elementlar turi va 

operatsiya tabiati bilan belgilanadi. 

Elementwise (element bo‘yicha) funksiyalar har bir elementga mustaqil ravishda 

qo‘llaniladi. Agar f: ℝ → ℝ skalar funksiya bo‘lsa, uning vektorli versiyasi F: ℝⁿ → ℝⁿ 

quyidagicha: F(x)ᵢ = f(xᵢ). Misollar: kvadrat, eksponent, sinus. Xususiyatlari: 

parallellashtirish oson, vektorizatsiya mumkin, har bir element mustaqil. Hisoblash 

murakkabligi O(n). 

Redutsiya funksiyalari massivni bitta qiymatga "qisqartiradi": f: ℝⁿ → ℝ. Misollar: 

sum, max, min, mean. Xususiyatlari: assosiativlik (ba’zi hollarda) parallel reduktsiяni 

ta’minlaydi. Tree reduction: O(log n) parallel depth, O(n) work. Kommutativlik 

tartibdan qat’iy nazar natija bir xil bo‘lishini kafolatlaydi. 

Transformatsiya funksiyalari massiv shaklini o‘zgartiradi: f: ℝᵐˣⁿ → ℝᵖˣq. 

Misollar: transpose, reshape, flatten. Xususiyatlari: ko‘pincha O(1) vaqt (view 

operations), metadata o‘zgaradi, lekin ma’lumotlar o‘zgarmaydi. Ba’zi hollarda (non-

contiguous data) copy talab qilinadi va O(n) vaqt. 

Chiziqli funksiyalar (operatorlar) superposition prinsipiga bo‘ysinadi: f(αx + βy) 

= αf(x) + βf(y). Matritsali ko‘paytirish: y = Ax eng muhim misol. Xususiyatlari: 

kompozitsiya ham chiziqli (AB matritsasi), teskari operator mavjud bo‘lishi mumkin 

(A⁻¹), xos qiymatlar va xos vektorlar orqali tavsiflanadi. 

Bilinear va ko‘p chiziqli funksiyalar bir nechta argumentlarda chiziqli. Bilinear: 

f(αx₁ + βx₂, y) = αf(x₁, y) + βf(x₂, y) va f(x, αy₁ + βy₂) = αf(x, y₁) + βf(x, y₂). Misollar: 

ichki ko‘paytma ⟨x, y⟩, matritsalarni ko‘paytirish C = AB (A va B bo‘yicha alohida 

chiziqli). Tensorli operatsiyalar ko‘p chiziqli funksiyalarning umumlashtirilishidir. 

Kompozitsiya funksiyalar murakkab operatsiyalarni oddiy operatsiyalardan 

quradi: h = g ∘ f, h(x) = g(f(x)). Xususiyatlari: assotsiativlik (k ∘ g) ∘ f = k ∘ (g ∘ f), 
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identifikatsiya id ∘ f = f ∘ id = f. Neyron tarmoqlar kompozitsiyalarning klassik misoli: 

y = f_L(f_{L-1}(...f₁(x)...)). 

Chiziqlilik va uning ahamiyati 

Chiziqli funksiyalar matematik va amaliy jihatdan eng muhim toifa hisoblanadi. 

Ta’rif: f chiziqli agar f(αx + βy) = αf(x) + βf(y) barcha α, β ∈ ℝ va x, y ∈ V uchun. Bu 

ikki xossani birlashtiradi: additivlik f(x + y) = f(x) + f(y) va bir jinslіlik f(αx) = αf(x). 

Chiziqli operatorlarning asosiy xususiyatlari: (1) Nol vektorni nol vektorga 

akslantiradi: f(0) = 0. (2) Chiziqli kombinatsiyani saqlay: f(Σᵢ αᵢ xᵢ) = Σᵢ αᵢ f(xᵢ). (3) 

Matritsa orqali ifodalanadi: chekli o‘lchovli fazolarda f(x) = Ax. (4) Kompozitsiya ham 

chiziqli: g ∘ f chiziqli agar f va g chiziqli bo‘lsa. 

Chiziqli tizimlar Ax = b ko‘plab masalalarning markazida. Ular fizik qonunlar 

(Kirchhoff qonunlari, elastiklik nazariyasi), iqtisodiy modellar (input-output tahlil, 

Leontief model), ma’lumotlar tahlili (regressiya, least squares) va ko‘plab boshqa 

sohalarda paydo bo‘ladi. Yechish usullari: to‘g‘ridan-to‘g‘ri (Gauss eliminatsiyasi, LU 

yoyilmasi) va iterativ (Jacobi, Gauss-Seidel, konjugat gradientlar). 

Chiziqli approksimatsiya nochiziqli funksiyalarni mahalliy chiziqli funksiya bilan 

yaqinlashtiradi. Agar f differensiallanuvchi bo‘lsa, f(x + Δx) ≈ f(x) + Df(x)Δx, bu yerda 

Df(x) - Jacobian matritsasi. Bu chiziqli approksimatsiya Nyuton usuli, optimallash 

algoritmlari va sensitivlik tahlilida qo‘llaniladi. 

Superposition prinsipi chiziqli tizimlarning asosiy xossasi. Agar x₁ va x₂ kirish 

uchun y₁ = f(x₁) va y₂ = f(x₂) chiqishlar bo‘lsa, unda αx₁ + βx₂ kirish uchun αy₁ + βy₂ 

chiqish bo‘ladi. Bu printsip signallarni qayta ishlash, elektr zanjirlari va ko‘plab boshqa 

sohalarda fundamental ahamiyatga ega. 

Chiziqli bo‘lmagan (nochiziqli) funksiyalar ko‘plab real muammolarda paydo 

bo‘ladi. Kvadratik funksiyalar f(x) = ½xᵀAx + bᵀx + c, ko‘p nomli funksiyalar, 

transsendet funksiyalar (sin, exp) - barchasi nochiziqli. Nochiziqli tenglamalarni 

yechish uchun iterativ usullar (Nyuton, gradiyent tushish) qo‘llaniladi. Ko‘pincha 

nochiziqli masalani chiziqli qism qismlariga ajratish strategiyasi ishlatiladi. 

Davomiylik va differensiallanish xususiyatlari 

Davomiylik funksiyaning "silliqligini" tavsiflaydi. Funksiya f: ℝⁿ → ℝᵐ x₀ 

nuqtada davomiy, agar har bir ε > 0 uchun δ > 0 mavjud bo‘lib, ||x - x₀|| < δ bo‘lganda 

||f(x) - f(x₀)|| < ε. Intuitsiya: kichik kirish o‘zgarishi kichik chiqish o‘zgarishiga olib 

keladi. Barqarorlik uchun muhim xossa. 

Lipschitz davomiyligi kuchliroq xossa: ||f(x) - f(y)|| ≤ L||x - y|| barcha x, y uchun, 

bu yerda L - Lipschitz doimiysi. Bu demak, funksiya o‘zgarish tezligi chegaralangan. 

Lipschitz davomiy funksiyalar konvergentsiya tahlilida va xatoliklarni baholashda 

muhim. Masalan, agar f Lipschitz bo‘lsa, Picard iteratsiyasi yaqinlashadi. 

Differensiallanish mahalliy chiziqli approksimatsiyani beradi. Funksiya f: ℝⁿ → 

ℝᵐ x₀ da differensiallanuvchi, agar chiziqli operator Df(x₀): ℝⁿ → ℝᵐ mavjud bo‘lib, 
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f(x₀ + h) = f(x₀) + Df(x₀)h + o(||h||). Df(x₀) - Jacobian matritsasi (m × n): [Df(x₀)]ᵢⱼ = 

∂fᵢ/∂xⱼ|_{x₀}. 

Gradient ∇f skalar funksiya f: ℝⁿ → ℝ uchun qisman hosilalar vektori: ∇f = 

(∂f/∂x₁, ..., ∂f/∂xₙ)ᵀ. Gradient eng tez o‘sish yo‘nalishini ko‘rsatadi. Optimallashtirish 

algoritmlari (gradient descent, BFGS) gradientdan foydalanadi. Kritik nuqtalarda 

gradient nolga teng: ∇f(x*) = 0. 

Hessian matritsasi H ikkinchi tartibli qisman hosilalar matritsasi: Hᵢⱼ = ∂²f/∂xᵢ∂xⱼ. 

Hessian funksiyaning "egriligini" tavsiflaydi. Agar H musbat aniq bo‘lsa, funksiya 

lokal minimum ga ega. Nyuton usuli Hessian dan foydalanadi: x_{k+1} = x_k - 

H⁻¹(x_k) ∇f(x_k). 

Chain rule (zanjir qoidasi) kompozitsiya hosilasini beradi: agar h = g ∘ f bo‘lsa, 

Dh(x) = Dg(f(x)) · Df(x). Matritsali ko‘rinishda: [Dh(x)]ᵢⱼ = Σₖ [Dg(f(x))]ᵢₖ [Df(x)]ₖⱼ. 

Backpropagation zanjir qoidasining iterativ qo‘llanilishi: gradientlarni orqaga tarqatish. 

Directional derivative yo‘nalish bo‘yicha hosila: D_v f(x) = lim_{t→0} [f(x + tv) 

- f(x)]/t = ∇f(x) · v. Bu v yo‘nalishda funksiyaning o‘zgarish tezligini beradi. Maksimal 

o‘zgarish gradient yo‘nalishida: D_v f maksimal bo‘lganda v || ∇f. 

Konvekslik va optimallashtirish masalalari 

Konveks funksiya f: ℝⁿ → ℝ quyidagi xossaga ega: f(λx + (1-λ)y) ≤ λf(x) + (1-

λ)f(y) barcha x, y va 0 ≤ λ ≤ 1 uchun. Geometrik ma’no: funksiya grafi har qanday 

ikkita nuqta orasidagi vatardan pastda. Konveks funksiyalar optimallashtirish 

nazariyasida markaziy rol o‘ynaydi. 

Konveks funksiyalarning xususiyatlari: (1) Har qanday lokal minimum global 

minimumdir. (2) Kritik nuqta (∇f = 0) global minimum. (3) Konveks funksiyalarning 

yig‘indisi va musbat chiziqli kombinatsiyasi konveks. (4) Differensiallanuvchi 

konveks funksiya uchun: f(y) ≥ f(x) + ∇f(x)ᵀ(y - x) (birinchi tartib sharti). 

Qat’iy konveks funksiya: tengsizlik qat’iy (λ ∈ (0, 1) va x ≠ y uchun). Qat’iy 

konveks funksiyaning yagona global minimumi bor. Masalan, f(x) = ||x||² qat’iy 

konveks. Kvadratik funksiya f(x) = ½xᵀAx + bᵀx konveks ⟺ A musbat yarimo‘q, 

qat’iy konveks ⟺ A musbat aniq. 

Gradient descent: x_{k+1} = x_k - α_k ∇f(x_k). Konveks funksiyalar uchun 

konvergentsiya kafolati: agar α_k to‘g‘ri tanlansan, x_k → x* (global minimum). 

Konvergentsiya tezligi sharti raqomiga bog‘liq. Strongly konveks funksiyalar uchun 

chiziqli konvergentsiya: ||x_k - x*|| ≤ C^k ||x_0 - x*||. 

Constrained optimization: min f(x) s.t. g(x) ≤ 0, h(x) = 0. Konveks 

optimallashtirish: f konveks, tengsizlik cheklovlari konveks to‘plam hosil qiladi, 

tenglik cheklovi affin. KKT shartlari: ∇f(x*) + Σᵢ λᵢ ∇gᵢ(x*) + Σⱼ μⱼ ∇hⱼ(x*) = 0, g(x*) ≤ 

0, h(x*) = 0, λ ≥ 0, λᵢ gᵢ(x*) = 0. Konveks muammolar uchun KKT zaruriy va yetarli. 

Duality (duallik) har bir primal muammoga dual muammo mos keladi. Weak 

duality: dual optimallik ≤ primal optimallik. Strong duality (konveks muammolarda, 

"Science and Education" Scientific Journal | www.openscience.uz 25 November 2025 | Volume 6 Issue 11

ISSN 2181-0842 | Impact Factor 4.525 131



Slater shartida): duallar tengdir. Dual muammo ba’zan yechish osonroq yoki 

cheklovlar kamroq. SVM (Support Vector Machines) dual formulatsiyada yechiladi. 

Chiziqli algebra operatsiyalari va masalalar 

Matritsali ko‘paytirish C = AB fundamental operatsiya. Naive algoritm: Cᵢⱼ = Σₖ 

Aᵢₖ Bₖⱼ, O(n³) vaqt. Strassen algoritmi: O(n^{log₂7}) ≈ O(n^{2.807}). Praktikada 

BLAS (Basic Linear Algebra Subprograms) kutubxonalari highly optimized: cache 

blocking, vectorization, parallelization. 

Chiziqli tizimlar Ax = b yechish. Dense matritsalar uchun: LU yoyilmasi O(n³), 

keyin forward/backward substitution O(n²) har bir b uchun. Cholesky (simmetrik 

musbat aniq uchun) ikki baravar tezroq. QR yoyilmasi (least squares uchun) barqaror. 

Siyrak matritsalar uchun: iterativ usullar (CG, GMRES) O(n²) yoki undan yaxshi 

(sparsity pattern ga bog‘liq). 

Xos qiyatlar va xos vektorlar Av = λv. Power method: eng katta xos qiymatni 

topadi, O(n²) har iteratsiyada. QR algoritmi: barcha xos qiyatlarni topadi, O(n³) 

preprocessing + O(n²) har iteratsiya. Jacobi va Givens rotatsiyalari simmetrik 

matritsalar uchun. Arnoldi/Lanczos iteratsiyalari katta siyrak matritsalar uchun. 

Singular Value Decomposition (SVD) A = UΣVᵀ. Golub-Kahan 

bidiagonalizatsiya + iterativ diagonalizatsiya. O(mn²) yoki O(m²n) (m va n dan kichigi). 

Truncated SVD: faqat k ta eng katta singular qiymat, randomized algoritmlari O(mn 

log k). Qo‘llanmalar: dimensionality reduction, image compression, recommender 

systems. 

Least squares muammosi min_x ||Ax - b||². Normal tenglamalar: AᵀAx = Aᵀb, 

lekin sharti raqomi katta bo‘lishi mumkin. QR yoyilmasi: A = QR, Rx = Qᵀb - 

barqaraliroq. SVD yechimi: x = A⁺b = VΣ⁺Uᵀb, bu yerda Σ⁺ - psevdoteskari. 

Regularizatsiya (Tikhonov): min ||Ax - b||² + λ||x||² overfittingni oldini oladi. 

Eigenvalue problems differensial tenglamalar, vibrations, stability analysis da 

paydo bo‘ladi. Generalized eigenvalue problem: Ax = λBx. Finite element method 

(FEM) bunday muammolarga olib keladi. Shift-and-invert strategy tezlashtiradi. 

Krylov subspace methods katta sparse muammolar uchun. 

Differensial tenglamalar va raqamli usullar 

Ordinary Differential Equations (ODE) dy/dt = f(y, t). Diskretlashtirish: y_{n+1} 

= y_n + h Φ(y_n, t_n, h), bu yerda h - qadam, Φ - usul. Eyler: Φ = f(y_n, t_n), O(h) 

xatolik. Runge-Kutta usullari: RK4 O(h⁴) xatolik, keng qo‘llaniladi. Adaptive step size: 

xatolikni boshqarish, samaradorlikni oshirish. 

Stiff ODE muammolari implicit usullarni talab qiladi. Backward Euler: y_{n+1} 

= y_n + h f(y_{n+1}, t_{n+1}) - implicit, lekin barqaror. BDF (Backward 

Differentiation Formulas) - multistep implicit usullar. Har qadamda nochiziqli tizim 

Nyuton usuli bilan yechiladi. Jacobian matritsasi ∂f/∂y kerak. 
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Partial Differential Equations (PDE) fazoviy va vaqt o‘zgaruvchilari bilan. 

Issiqlik tenglamasi: ∂u/∂t = α ∂²u/∂x². Method of lines: fazoni diskretlashtirish (chekli 

farqlar), vaqt bo‘yicha ODE yechuvchi. Explicit usullar (Forward Euler + central 

differences): stability chekloviga ega (CFL sharti). Implicit usullar (Backward Euler, 

Crank-Nicolson): har qadamda chiziqli tizim yechiladi, lekin unconditionally stable. 

Finite Element Method (FEM) murakkab geometriya va BC uchun. Domain ni 

elementlarga bo‘lish (mesh generation). Weak formulation: ∫ v Lu dx = ∫ v f dx test 

funksiyalar v uchun. Galerkin usuli: u ≈ Σᵢ uᵢ φᵢ(x) (bazis funksiyalari). Natija: chiziqli 

yoki nochiziqli tizim Ku = F. K - stiffness matrix (sparse, structured). 

Spectral methods global polinomlar bilan approksimatsiya. Fourier spectral 

method: u(x) = Σₙ ûₙ e^{inx}. Chebyshev spectral method: u(x) = Σₙ aₙ Tₙ(x). 

Differensial operatorlarni spektral fazoda qo‘llash - ko‘paytirish (Fourier uchun), 

matritsa (Chebyshev uchun). Eksponensial konvergentsiya silliq funksiyalar uchun, 

lekin global - discontinuities muammosi. 

Time-dependent PDE: separation of variables, semi-discretization. Advection 

tenglamasi ∂u/∂t + c ∂u/∂x = 0: upwind schemes (ustida), Lax-Wendroff, flux-limiter 

usullari. Nonlinear conservation laws: shock’lar riemann solvers bilan. Hyperbolic, 

parabolic, elliptic PDE turli xususiyatlar va usullar talab qiladi. 

Tasvirlarni qayta ishlash va signallar tahlili 

Raqamli tasvir - ikki o‘lchovli massiv I(i, j), bu yerda i, j - piksel koordinatalari, 

qiymat - intensivlik (grayscale) yoki rang (RGB). Rangli tasvir - uch o‘lchovli massiv 

I(i, j, c), c ∈ {R, G, B}. Tasvirni yuklash, saqlash, ko‘rsatish - asosiy operatsiyalar. 

Format konvertatsiyasi (JPEG, PNG, BMP), rang modellari (RGB, HSV, YCbCr). 

Konvolyutsiya - tasvirlarni filtrlash asosi. Diskret konvolyutsiya: (I * K)(i, j) = Σₘ 

Σₙ I(i-m, j-n) K(m, n), bu yerda K - filtr kerneli (kernel). Gaussian blur: K - Gaussian 

funksiyasi, noise ni kamaytiradi. Sharpening: K center qiymat katta, qo‘shnilar manfiy. 

Edge detection: Sobel, Prewitt, Canny kernellari gradiyentni hisoblaydi. 

Fourier transformatsiyasi tasvir chastotali komponentlarini tahlil qiladi. 2D DFT: 

F(u, v) = Σᵢ Σⱼ I(i, j) e^{-2πi(ui/M + vj/N)}. Fast Fourier Transform (FFT) O(N log N) 

tezligida. Chastotali filtrlash: F(u, v) ni ko‘paytirish (low-pass, high-pass, band-pass), 

keyin teskari FFT. Qo‘llanmalar: noise filterlash, pattern analysis, compression. 

Morphological operations binary yoki grayscale tasvirlarda strukturaviy 

o‘zgarishlar. Dilation: A ⊕ B = {z | (B̂)_z ∩ A ≠ ∅}, ob’ektlarni kengaytiradi. Erosion: 

A ⊖ B = {z | B_z ⊆ A}, ob’ektlarni siqadi. Opening: erosion keyin dilation, kichik 

noise’ni olib tashlaydi. Closing: dilation keyin erosion, kichik teshiklarni to‘ldiradi. 

Structuring element B - kernel. 

Image segmentation - tasvirni mazmunli qismlarga bo‘lish. Thresholding: binary 

segmentation, I(i, j) > T → 1, aks holda 0. Otsu usuli: optimal threshold avtomatik 
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topish. Region growing: seed nuqtadan boshlash, o‘xshash qo‘shnilarni qo‘shish. 

Watershed algoritmi: gradient kabi "topografiya" ga qarab bo‘lish. 

Feature extraction - tasvir xususiyatlarini ajratib olish. Edge detection (Canny), 

corner detection (Harris), blob detection (LoG, DoG). SIFT (Scale-Invariant Feature 

Transform), SURF - keypoints va descriptors. Deep learning usullari (CNN) avtomatik 

feature learning: past darajali (edges) dan yuqori darajali (ob’ektlar) gacha. 

Statistik tahlil va ma’lumotlar modellash 

Ma’lumotlar matritsasi X (n × p): n - observations, p - features. Preprocessing: 

normalization (mean=0, std=1), standardization, missing values imputation. Outlier 

detection: statistical tests, visualization (boxplot, scatter), isolation forest. 

Principal Component Analysis (PCA) o‘lchamni kamaytirish. Kovariatsiya 

matritsasi Σ = (1/(n-1)) XᵀX. Xos yoyilmasi: Σ = QΛQᵀ. Prinsipal komponentlar - Q 

ning ustunlari (xos vektorlar). Proyeksiya: Y = XQ. Variance explained: λᵢ / Σⱼ λⱼ. Scree 

plot: optimal komponentlar sonini tanlash. Qo‘llanmalar: visualization (2D/3D), noise 

reduction, compression. 

Linear regression: y = Xβ + ε. Least squares: β ̂= (XᵀX)⁻¹Xᵀy. Ridge regression: 

β̂_ridge = (XᵀX + λI)⁻¹Xᵀy, regularization multicollinearity va overfitting ni hal qiladi. 

Lasso: L1 regularization, feature selection. Elastic net: L1 va L2 kombinatsiyasi. 

Generalized linear models (GLM): logistic regression (binary y), Poisson regression 

(count data). 

Time series tahlili: {yₜ} - vaqt bo‘yicha kuzatishlar. Autocorrelation function 

(ACF): ρ(k) = Corr(yₜ, yₜ₊ₖ), temporal dependencies ni ko‘rsatadi. ARIMA model: 

AutoRegressive Integrated Moving Average. State-space models va Kalman filtering: 

xₜ = Axₜ₋₁ + wₜ (latent state), yₜ = Cxₜ + vₜ (observation). Forecasting: trend, seasonality, 

noise komponentlari. 

Multivariate statistics: ko‘p o‘zgaruvchilar orasidagi munosabatlar. Covariance 

matrix Σ - o‘zgaruvchilar orasidagi bog‘liqlik. Correlation matrix R - normalized. 

Mahalanobis distance: d²(x, μ) = (x - μ)ᵀ Σ⁻¹ (x - μ), correlation hisobga olingan masofa. 

Hotelling T² test - multivariate analog of t-test. 

Factor analysis latent o‘zgaruvchilarni topadi: X = ΛF + ε, bu yerda F - latent 

factors, Λ - loadings. PCA dan farqi: error term ε. Exploratory vs confirmatory factor 

analysis. Rotation usullari (varimax, oblimin) interpretatsiyani yaxshilaydi. 

Mashinali o‘rganish algoritmlari 

Supervised learning: training data (X, y), maqsad: f: X → y mapping o‘rganish. 

Loss function L(ŷ, y): squared loss (regression), cross-entropy (classification). 

Empirical risk minimization: min_θ (1/n) Σᵢ L(f_θ(xᵢ), yᵢ). Regularization: min_θ L + 

λR(θ), bu yerda R - regularizer (L2, L1, elastic net). 

Neural networks: multilayer perceptron. Forward pass: h₀ = x, hₗ = σ(Wₗ hₗ₋₁ + bₗ), 

ŷ = h_L. Activation functions: sigmoid, tanh, ReLU, Leaky ReLU. Backward pass 
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(backpropagation): ∂L/∂Wₗ va ∂L/∂bₗ ni zanjir qoidasi orqali hisoblash. Gradient 

descent: Wₗ ← Wₗ - α ∂L/∂Wₗ. Mini-batch SGD: kichik batch’larda gradientlarni 

hisoblash. 

Convolutional Neural Networks (CNN) tasvirlar uchun. Convolutional layer: 

feature maps, local receptive fields, weight sharing. Pooling layer: spatial 

downsampling (max pooling, average pooling). Architecture: alternating conv-pool 

layers, keyin fully connected. Famous architectures: LeNet, AlexNet, VGG, ResNet, 

Inception. Transfer learning: pretrained modelfdan feature extraction yoki fine-tuning. 

Recurrent Neural Networks (RNN) sequential data uchun. Hidden state: hₜ = σ(Wₓ 

xₜ + Wₕ hₜ₋₁ + b). Backpropagation Through Time (BPTT): gradientlarni vaqt orqaga 

tarqatish. Vanishing/exploding gradient muammosi. LSTM va GRU: gating 

mechanisms, long-term dependencies. Applications: language modeling, machine 

translation, speech recognition. 

Unsupervised learning: faqat X, label’siz. K-means clustering: har bir nuqta eng 

yaqin centroidga, centroidlar yangilanadi. Hierarchical clustering: agglomerative 

(bottom-up) yoki divisive (top-down), dendrogram. Gaussian Mixture Models (GMM): 

probabilistic clustering, EM algorithm. Dimensionality reduction: PCA, t-SNE, 

autoencoders. 

Reinforcement learning: agent muhitda harakat qiladi, reward oladi. Markov 

Decision Process (MDP): states, actions, transitions, rewards. Policy π(a|s): qaysi 

action state s da. Value function V^π(s): expected cumulative reward. Q-learning: Q(s, 

a) = reward + γ max_a’ Q(s’, a’) (Bellman equation). Deep Q-Networks (DQN): Q-

function neural network bilan approksimatsiya. Policy gradient methods, Actor-Critic. 

Xulosa 

Ko‘p o‘lchovli massiv funksiyalarining xususiyatlari va matematik hamda amaliy 

masalalarni yechishdagi rolini tadqiq qilish natijasida quyidagi fundamental 

xulosalarga kelamiz. 

Massiv funksiyalarining tizimli tasnifi va xususiyatlari dasturlash va matematik 

modellashtirish uchun muhim asos yaratadi. Elementwise, redutsiya, transformatsiya, 

chiziqli va ko‘p chiziqli funksiyalar har biri o‘z xususiyatlari va qo‘llanish sohalariga 

ega. Funksiyalarning kompozitsiyasi murakkab operatsiyalarni oddiy operatsiyalardan 

qurish imkonini beradi. 

Chiziqlilik xossasi matematikaning eng muhim tushunchalaridan biri bo‘lib, 

superposition prinsipi, chiziqli tizimlar va ko‘plab soddalashtirishlarga olib keladi. 

Chiziqli operatorlar matritsalar orqali ifodalanadi va ularning xususiyatlari (xos 

qiyatlar, singular qiymatlar) chuqur matematik ma’noga ega. 

Davomiylik va differensiallanish funksiyalarning analitik xususiyatlarini 

tavsiflaydi. Davomiy funksiyalar barqaror, differensiallanuvchi funksiyalar mahalliy 
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chiziqli approksimatsiyaga ega. Gradient va Hessian optimallash algoritmlarining 

asosini tashkil etadi. 

Konvekslik optimallashtirish nazariyasida markaziy rol o‘ynaydi. Konveks 

funksiyalar lokal minimumga ega emas, global minimum mavjud va gradient usullari 

yaxshi ishlaydi. Konveks optimallashtirish ko‘plab amaliy masalalarda qo‘llaniladi. 

Chiziqli algebra operatsiyalari ilmiy hisoblashlarning asosini tashkil etadi. 

Matritsalarni ko‘paytirish, chiziqli tizimlarni yechish, xos qiyatlar va SVD - barchasi 

massiv funksiyalari orqali amalga oshiriladi. Samarali algoritmlar va kutubxonalar 

(BLAS, LAPACK) amaliy tizimlar uchun muhim. 

Differensial tenglamalarni raqamli yechish massiv diskretizatsiyasiga asoslanadi. 

ODE va PDE usullari chekli farqlar, chekli elementlar va spektral usullarni o‘z ichiga 

oladi. Bu usullar fizika, muhandislik va boshqa sohalarda keng qo‘llaniladi. 

Tasvirlarni qayta ishlash va signallar tahlili massiv operatsiyalarining muhim 

qo‘llanmasi hisoblanadi. Konvolyutsiya, Fourier transformatsiyasi, morphological 

operations va feature extraction tasvirlarni tahlil qilish va tushunishda asosiy vositalar. 

Statistik tahlil va ma’lumotlar modellash ma’lumotlar matritsalari orqali amalga 

oshiriladi. PCA, regression, time series, multivariate statistics - barchasi chiziqli 

algebra va statistikaning kombinatsiyasidir. Bu usullar ma’lumotlar fanida keng 

qo‘llaniladi. 

Mashinali o‘rganish algoritmlari massiv operatsiyalarining eng murakkab 

qo‘llanmalaridan biri. Neural networks, CNN, RNN va reinforcement learning tensorli 

hisoblashlarga asoslanadi. Backpropagation, gradient descent va boshqa optimallash 

usullari massiv funksiyalarining chuqur tushunishini talab qiladi. 

Umumiy xulosa: ko‘p o‘lchovli massiv funksiyalari zamonaviy matematik va 

amaliy fanlarning asosiy vositasi hisoblanadi. Ularning xususiyatlarini to‘liq tushunish 

samarali algoritmlar yaratish, murakkab masalalarni yechish va yangi tadqiqot 

yo‘nalishlarini ochish uchun zarur. 
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