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Ko‘p o‘lchovli massiv funksiyalarining xususiyatlari va
ularning matematik hamda amaliy masalalarni yechishda roli

Gulbodom Oybek qizi Norqulova
BXU

Annotatsiya: Ushbu maqolada ko‘p o‘lchovli massiv funksiyalarining asosiy
xususiyatlari, matematik tavsiflari va amaliy masalalarni yechishdagi ahamiyati
kompleks tadqiq qilingan. Massiv funksiyalarining tizimli tasnifi, ularning algebraik
va analitik xossalari, kompozitsiya qoidalari va transformatsiya mexanizmlari batafsil
o‘rganilgan. Tadqiqotda funksiyalarning chiziqlilik, davomiylik, differensiallanish va
optimallik xususiyatlari tahlil gilingan. Ilmiy hisoblashlar, muhandislik masalalari,
ma’lumotlar tahlili, tasvirlarni qayta ishlash, optimallash nazariyasi va mashinali
o‘rganishda massiv funksiyalarining qo‘llanilishi ko‘rsatilgan. Funksiyalarning
hisoblash murakkabligi, xotira samaradorligi va parallel bajarilish imkoniyatlari
baholangan. Tadqiqot natijalari zamonaviy dasturlash amaliyotida massiv
funksiyalaridan samarali foydalanish va murakkab matematik-amaliy masalalarni
yechish uchun nazariy va metodologik asos yaratadi.

Kalit so‘zlar: massiv funksiyalari, matematik xususiyatlar, amaliy masalalar,
chiziqli operatorlar, funksional tahlil, hisoblash algoritmlari, ilmiy hisoblashlar,
ma’lumotlar gayta ishlash, optimallash, transformatsiya, kompozitsiya, samaradorlik
tahlili, amaliy matematika

Properties of Multidimensional Array Functions and Their
Role in Solving Mathematical and Applied Problems

Gulbodom Oybek qizi Norqulova
BIU

Abstract: This article provides a comprehensive study of the fundamental
properties of multidimensional array functions, their mathematical characterization,
and their importance in solving applied and mathematical problems. The systematic
classification of array functions, their algebraic and analytical properties, composition
rules, and transformation mechanisms are examined in detail. The study analyzes key
characteristics of functions such as linearity, continuity, differentiability, and
optimality. Applications of array functions in scientific computing, engineering
problems, data analysis, image processing, optimization theory, and machine learning
are presented. The computational complexity, memory efficiency, and parallel
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execution capabilities of the functions are evaluated. The findings establish a
theoretical and methodological foundation for the effective use of array functions in
modern programming practice and for solving complex mathematical-applied
problems.

Keywords: array functions, mathematical properties, applied problems, linear
operators, functional analysis, computational algorithms, scientific computing, data
processing, optimization, transformation, composition, efficiency analysis, applied
mathematics

Kirish

Ko‘p o‘lchovli massiv funksiyalari zamonaviy matematik va amaliy fanlarning
markaziy tushunchalaridan biri hisoblanadi. Ular abstrakt matematik ob’ektlarni
konkret hisoblash operatsiyalariga bog‘lovchi ko‘prik vazifasini o‘taydi. Massiv
funksiyalari nafagat ma’lumotlarni transformatsiya qilish vositasi, balki murakkab
matematik munosabatlarni ifodalash va amaliy masalalarni yechishning samarali usuli
hisoblanadi.

Massiv funksiyalarining xususiyatlari bir necha jihatdan muhimdir. Birinchidan,
matematik jihatdan ular funksional tahlil, chiziqgli algebra va operator nazariyasining
konkret namunalarini beradi. Ikkinchidan, hisoblash nuqtai nazaridan ular algoritm
samaradorligi, xotira boshqaruvi va parallellashtirish 1mkoniyatlarini belgilaydi.
Uchinchidan, amaliy jihatdan ular real dunyo masalalarini modellashtirish va yechish
vositasi hisoblanadi.

Matematik masalalarni yechishda massiv funksiyalari muhim rol o‘ynaydi.
Chiziqli tenglamalar tizimini yechish, xos qiymatlarni topish, differensial
tenglamalarni raqamli integratsiya qilish, optimallashtirish masalalari - barchasida
massiv operatsiyalari asosiy vosita hisoblanadi. Chiziqli algebra apparati matritsalar va
vektorlar orqali ifodalanadi va massiv funksiyalari bu ob’ektlar ustida ishlaydi.

Amaliy masalalarda massiv funksiyalarining roli yanada kengroqdir. Muhandislik
hisoblashlarda strukturalarni tahlil qilish, issiqlik tarqalishi, suyuqlik dinamikasi kabi
jarayonlarni modellashtirish massivlar orqali amalga oshiriladi. Ma’lumotlar fanida
katta hajmdagi ma’lumotlarni qayta ishlash, tahlil qilish va vizualizatsiya qilish uchun
massiv operatsiyalari zarur. Tasvirlarni qayta ishlashda har bir piksel massiv elementi
sifatida garaladi va filtrlash, transformatsiya, segmentatsiya kabi operatsiyalar massiv
funksiyalari orqali bajariladi.

Mashinali o‘rganish va sun’iy intellektda massiv funksiyalari markaziy o‘rinni
egallaydi. Neyron tarmoqlar og‘irliklari matritsalar, aktivatsiyalar vektorlar sifatida
saglanadi. Forward propagation va backpropagation jarayonlari ketma-ket massiv
operatsiyalari sifatida amalga oshiriladi. Tensorli operatsiyalar chuqur o‘rganishning
asosini tashkil etadi.

ISSN 2181-0842 | IMPACT FACTOR 4.525 128 @) e |



"SCIENCE AND EDUCATION" SCIENTIFIC JOURNAL | WWW.OPENSCIENCE.UZ 25 NOVEMBER 2025 | VOLUME 6 ISSUE 11

Funksiyalarning xususiyatlarini tushunish ularni to‘g‘ri qo‘llash uchun zarur.
Chiziqlilik xossasi superposition prinsipini beradi va ko‘plab soddalashtirishlarga olib
keladi. Davomiylik xossasi kichik kirishdagi o‘zgarishlar kichik chiqishdagi
o‘zgarishlarga olib kelishini kafolatlaydi. Differensiallanish xossasi gradient usullarini
qo‘llash imkonini beradi va optimallashtirish algoritmlarining asosini tashkil etadi.

Tadqiqotning magqgsadi ko‘p oflchovli massiv funksiyalarining asosiy
xususiyatlarini sistemali tahlil qilish, ularning matematik asoslarini ochib berish va
matematik hamda amaliy masalalarni yechishdagi rolini ko‘rsatishdan iborat. Tadqiqot
ob’ekti sifatida turli toifadagi massiv funksiyalari, ularning xususiyatlari va real
masalalardagi qo‘llanmalari tanlab olingan.

Asosiy qgism

Massiv funksiyalarining asosiy toifalari va xususiyatlari

Massiv funksiyalari umumiy shaklda f: D — C ko‘rinishda ifodalanadi, bu yerda
D - domen (kirish massivlari to‘plami), C - kodomen (chiqish massivlari to‘plami).
Funksiyaning turi kirish va chiqish massivlarining o‘lchamlari, elementlar turi va
operatsiya tabiati bilan belgilanadi.

Elementwise (element bo‘yicha) funksiyalar har bir elementga mustaqil ravishda
qo‘llaniladi. Agar f: R — R skalar funksiya bo‘lsa, uning vektorli versiyasi F: R» — R»
quyidagicha: F(x); = f(xi). Misollar: kvadrat, eksponent, sinus. Xususiyatlari:
parallellashtirish oson, vektorizatsiya mumkin, har bir element mustaqil. Hisoblash
murakkabligi O(n).

Redutsiya funksiyalari massivni bitta qiymatga "qisqartiradi": f: R» — R. Misollar:
sum, max, min, mean. Xususiyatlari: assosiativlik (ba’zi hollarda) parallel reduktsisni
ta’minlaydi. Tree reduction: O(log n) parallel depth, O(n) work. Kommutativlik
tartibdan gat’iy nazar natija bir xil bo‘lishini kafolatlaydi.

Transformatsiya funksiyalari massiv shaklini o‘zgartiradi: f: Rm» — Rpxq,
Misollar: transpose, reshape, flatten. Xususiyatlari: ko‘pincha O(1) vaqt (view
operations), metadata o‘zgaradi, lekin ma’lumotlar o‘zgarmaydi. Ba’zi hollarda (non-
contiguous data) copy talab qgilinadi va O(n) vaqt.

Chiziqli funksiyalar (operatorlar) superposition prinsipiga bo‘ysinadi: f(ax + Py)
= af(x) + Pf(y). Matritsali ko‘paytirish: y = Ax eng muhim misol. Xususiyatlari:
kompozitsiya ham chiziqli (AB matritsasi), teskari operator mavjud bo‘lishi mumkin
(A™), xos giymatlar va xos vektorlar orqali tavsiflanadi.

Bilinear va ko‘p chiziqli funksiyalar bir nechta argumentlarda chiziqli. Bilinear:
flax: + Bxz, y) = af(x1, y) + Bf(x2, y) va f(x, ay: + By2) = af(x, y1) + Bf(x, y2). Misollar:
ichki ko‘paytma (x, y), matritsalarni ko‘paytirish C = AB (A va B bo‘yicha alohida
chiziqli). Tensorli operatsiyalar ko‘p chiziqli funksiyalarning umumlashtirilishidir.

Kompozitsiya funksiyalar murakkab operatsiyalarni oddiy operatsiyalardan
quradi: h = g o f, h(x) = g(f(x)). Xususiyatlari: assotsiativlik (k e g) o f=k o (g o f),
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identifikatsiya id o f=f o id = f. Neyron tarmogqlar kompozitsiyalarning klassik misoli:
y=1f L(f {L-1}(...fi(x)...)).

Chiziglilik va uning ahamiyati

Chiziqgli funksiyalar matematik va amaliy jihatdan eng muhim toifa hisoblanadi.
Ta’rif: f chiziqli agar f(ax + By) = af(x) + Bf(y) barcha a, p € R vax, y € V uchun. Bu
ikki xossani birlashtiradi: additivlik f(x + y) = f(x) + f(y) va bir jinslilik f(ax) = af(x).

Chizigli operatorlarning asosiy xususiyatlari: (1) Nol vektorni nol vektorga
akslantiradi: f(0) = 0. (2) Chiziqli kombinatsiyani saqlay: f(Z; ai xi) = Z; oi f(xi). (3)
Matritsa orqali ifodalanadi: chekli o‘lchovli fazolarda f(x) = Ax. (4) Kompozitsiya ham
chiziqli: g o f chiziqli agar f va g chiziqgli bo‘lsa.

Chizigli tizimlar Ax = b ko‘plab masalalarning markazida. Ular fizik qonunlar
(Kirchhoff qonunlari, elastiklik nazariyasi), iqtisodiy modellar (input-output tahlil,
Leontief model), ma’lumotlar tahlili (regressiya, least squares) va ko‘plab boshqa
sohalarda paydo bo‘ladi. Yechish usullari: to‘g‘ridan-to‘g‘ri (Gauss eliminatsiyasi, LU
yoyilmasi) va iterativ (Jacobi, Gauss-Seidel, konjugat gradientlar).

Chizigli approksimatsiya nochiziqli funksiyalarni mahalliy chizigli funksiya bilan
yaqinlashtiradi. Agar f differensiallanuvchi bo‘lsa, f(x + Ax) = f(x) + Df(x)Ax, bu yerda
Df(x) - Jacobian matritsasi. Bu chiziqli approksimatsiya Nyuton usuli, optimallash
algoritmlari va sensitivlik tahlilida qo‘llaniladi.

Superposition prinsipi chizigli tizimlarning asosiy xossasi. Agar x: va X2 kirish
uchun y: = f(x1) va y2 = f(x2) chiqishlar bo‘lsa, unda ax: + Bx: kirish uchun ay: + By
chiqish bo‘ladi. Bu printsip signallarni qayta ishlash, elektr zanjirlari va ko‘plab boshqa
sohalarda fundamental ahamiyatga ega.

Chizigli bo‘lmagan (nochiziqli) funksiyalar ko‘plab real muammolarda paydo
bo‘ladi. Kvadratik funksiyalar f(x) = 2xTAx + b™x + ¢, ko‘p nomli funksiyalar,
transsendet funksiyalar (sin, exp) - barchasi nochizigli. Nochiziqli tenglamalarni
yechish uchun iterativ usullar (Nyuton, gradiyent tushish) qo‘llaniladi. Ko‘pincha
nochiziqli masalani chiziqli qism gismlariga ajratish strategiyasi ishlatiladi.

Davomiylik va differensiallanish xususiyatlari

Davomiylik funksiyaning "silligligini" tavsiflaydi. Funksiya f: R* — R™ Xo
nuqtada davomiy, agar har bir € > 0 uchun 6 > 0 mavjud bo‘lib, ||x - Xo|| < 8 bo‘lganda
If(x) - f(xo0)|| < €. Intuitsiya: kichik kirish o‘zgarishi kichik chiqish o‘zgarishiga olib
keladi. Bargarorlik uchun muhim xossa.

Lipschitz davomiyligi kuchliroq xossa: ||f(x) - f(y)|| < L||x - y|| barcha x, y uchun,
bu yerda L - Lipschitz doimiysi. Bu demak, funksiya o‘zgarish tezligi chegaralangan.
Lipschitz davomiy funksiyalar konvergentsiya tahlilida va xatoliklarni baholashda
muhim. Masalan, agar f Lipschitz bo‘lsa, Picard iteratsiyasi yaqinlashadi.

Differensiallanish mahalliy chiziqli approksimatsiyani beradi. Funksiya f: R* —
Rm xo da differensiallanuvchi, agar chizigli operator Df(xo): R*» — R™ mavjud bo‘lib,
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f(xo + h) = f(x0) + Df(x0)h + o(]|h]|). Df(x0) - Jacobian matritsasi (m % n): [Df(xo)];; =
ofi/0xj|_{xXo}.

Gradient Vf skalar funksiya f: R» — R uchun gisman hosilalar vektori: Vf =
(of/oxa, ..., O0f/0xn)T. Gradient eng tez o‘sish yo‘nalishini ko‘rsatadi. Optimallashtirish
algoritmlari (gradient descent, BFGS) gradientdan foydalanadi. Kritik nuqtalarda
gradient nolga teng: V{(x*) = 0.

Hessian matritsasi H ikkinchi tartibli qisman hosilalar matritsasi: Hij = 0*{/0xi0x;.
Hessian funksiyaning "egriligini" tavsiflaydi. Agar H musbat aniq bo‘lsa, funksiya
lokal minimum ga ega. Nyuton usuli Hessian dan foydalanadi: x {k+1} = x k -
H'(x_k) Vf(x_k).

Chain rule (zanjir qoidasi) kompozitsiya hosilasini beradi: agar h = g o f bo‘lsa,
Dh(x) = Dg(f(x)) - Df(x). Matritsali ko‘rinishda: [Dh(x)]; = Zk [Dg(f(x))]i [Df(x)]x;.
Backpropagation zanjir qoidasining iterativ qo‘llanilishi: gradientlarni orqaga tarqatish.

Directional derivative yo‘nalish bo‘yicha hosila: D v f(x) =lim_{t—0} [f(x + tv)
- f(x)]/t = V{(x) - v. Buv yo‘nalishda funksiyaning o‘zgarish tezligini beradi. Maksimal
o‘zgarish gradient yo‘nalishida: D v f maksimal bo‘lganda v || Vf.

Konvekslik va optimallashtirish masalalari

Konveks funksiya f: R* — R quyidagi xossaga ega: f(Ax + (1-A)y) < Af(x) + (1-
Mf(y) barcha x, y va 0 < A < 1 uchun. Geometrik ma’no: funksiya grafi har qanday
ikkita nuqta orasidagi vatardan pastda. Konveks funksiyalar optimallashtirish
nazariyasida markaziy rol o‘ynaydi.

Konveks funksiyalarning xususiyatlari: (1) Har qanday lokal minimum global
minimumdir. (2) Kritik nuqgta (Vf = 0) global minimum. (3) Konveks funksiyalarning
yig‘indisi va musbat chiziqli kombinatsiyasi konveks. (4) Differensiallanuvchi
konveks funksiya uchun: f(y) > f(x) + V{(x)"(y - x) (birinchi tartib sharti).

Qat’iy konveks funksiya: tengsizlik qat’iy (A € (0, 1) va x # y uchun). Qat’iy
konveks funksiyaning yagona global minimumi bor. Masalan, f(x) = ||x|* qat’iy
konveks. Kvadratik funksiya f(x) = /2xTAx + b™x konveks < A musbat yarimo‘q,
qat’iy konveks & A musbat aniq.

Gradient descent: x {k+1} = x k - a_k Vf(x k). Konveks funksiyalar uchun
konvergentsiya kafolati: agar a_k to‘g‘ri tanlansan, x k — x* (global minimum).
Konvergentsiya tezligi sharti raqomiga bog‘liq. Strongly konveks funksiyalar uchun
chiziqli konvergentsiya: ||x_k - x*|| < C"k ||x_0 - x*||.

Constrained optimization: min f(x) st g(x) < 0, h(x) = 0. Konveks
optimallashtirish: f konveks, tengsizlik cheklovlari konveks to‘plam hosil qiladi,
tenglik cheklovi affin. KKT shartlari: V(x*) + X Ai Vgi(x*) + X u; Vhy(x*) = 0, g(x*) <
0, h(x*)=0,A >0, A gi(x*) = 0. Konveks muammolar uchun KKT zaruriy va yetarli.

Duality (duallik) har bir primal muammoga dual muammo mos keladi. Weak
duality: dual optimallik < primal optimallik. Strong duality (konveks muammolarda,
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Slater shartida): duallar tengdir. Dual muammo ba’zan yechish osonroq yoki
cheklovlar kamrogq. SVM (Support Vector Machines) dual formulatsiyada yechiladi.

Chiziqli algebra operatsiyalari va masalalar

Matritsali ko‘paytirish C = AB fundamental operatsiya. Naive algoritm: Cj; =
Aic By, O(n®) vaqt. Strassen algoritmi: O(n"{log.7}) = O(n"{2.807}). Praktikada
BLAS (Basic Linear Algebra Subprograms) kutubxonalari highly optimized: cache
blocking, vectorization, parallelization.

Chiziqli tizimlar Ax = b yechish. Dense matritsalar uchun: LU yoyilmasi O(n?),
keyin forward/backward substitution O(n?) har bir b uchun. Cholesky (simmetrik
musbat aniq uchun) ikki baravar tezroq. QR yoyilmasi (least squares uchun) bargaror.
Siyrak matritsalar uchun: iterativ usullar (CG, GMRES) O(n?) yoki undan yaxshi
(sparsity pattern ga bog‘liq).

Xos qiyatlar va xos vektorlar Av = Av. Power method: eng katta xos qiymatni
topadi, O(n?) har iteratsiyada. QR algoritmi: barcha xos qiyatlarni topadi, O(n?)
preprocessing + O(n?) har iteratsiya. Jacobi va Givens rotatsiyalari simmetrik
matritsalar uchun. Arnoldi/Lanczos iteratsiyalari katta siyrak matritsalar uchun.

Singular Value Decomposition (SVD) A = UZVT  Golub-Kahan
bidiagonalizatsiya + iterativ diagonalizatsiya. O(mn?) yoki O(m?n) (m va n dan kichigi).
Truncated SVD: faqat k ta eng katta singular qiymat, randomized algoritmlari O(mn
log k). Qo‘llanmalar: dimensionality reduction, image compression, recommender
systems.

Least squares muammosi min_x ||Ax - b|]>. Normal tenglamalar: ATAx = ATb,
lekin sharti raqomi katta bo‘lishi mumkin. QR yoyilmasi: A = QR, Rx = QTb -
barqaraliroq. SVD yechimi: x = A*'b = VZ'UTb, bu yerda X* - psevdoteskari.
Regularizatsiya (Tikhonov): min ||Ax - b|]* + A|x|]* overfittingni oldini oladi.

Eigenvalue problems differensial tenglamalar, vibrations, stability analysis da
paydo bo‘ladi. Generalized eigenvalue problem: Ax = ABX. Finite element method
(FEM) bunday muammolarga olib keladi. Shift-and-invert strategy tezlashtiradi.
Krylov subspace methods katta sparse muammolar uchun.

Differensial tenglamalar va raqamli usullar

Ordinary Differential Equations (ODE) dy/dt = f(y, t). Diskretlashtirish: y {n+1}
=y n+h®(y n,t n, h), buyerda h - qadam, ® - usul. Eyler: ® = f(y_n, t n), O(h)
xatolik. Runge-Kutta usullari: RK4 O(h*) xatolik, keng qo‘llaniladi. Adaptive step size:
xatolikni boshqarish, samaradorlikni oshirish.

Stiff ODE muammolari implicit usullarni talab qgiladi. Backward Euler: y {n+1}
= yn + h fy {nt1}, t {nt1}) - implicit, lekin barqaror. BDF (Backward
Differentiation Formulas) - multistep implicit usullar. Har qadamda nochiziqli tizim
Nyuton usuli bilan yechiladi. Jacobian matritsasi 0f/0y kerak.
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Partial Differential Equations (PDE) fazoviy va vaqt o‘zgaruvchilari bilan.
Issiglik tenglamasi: du/ot = a 6*u/0x. Method of lines: fazoni diskretlashtirish (chekli
farglar), vaqt bo‘yicha ODE yechuvchi. Explicit usullar (Forward Euler + central
differences): stability chekloviga ega (CFL sharti). Implicit usullar (Backward Euler,
Crank-Nicolson): har gadamda chiziqli tizim yechiladi, lekin unconditionally stable.

Finite Element Method (FEM) murakkab geometriya va BC uchun. Domain ni
elementlarga bo‘lish (mesh generation). Weak formulation: | v Lu dx = [ v f dx test
funksiyalar v uchun. Galerkin usuli: u = Z; u; ¢i(x) (bazis funksiyalari). Natija: chizigli
yoki nochizigli tizim Ku = F. K - stiffness matrix (sparse, structured).

Spectral methods global polinomlar bilan approksimatsiya. Fourier spectral
method: u(x) = X, G, eMinx}. Chebyshev spectral method: u(x) = Z, a, Tu(X).
Differensial operatorlarni spektral fazoda qo‘llash - ko‘paytirish (Fourier uchun),
matritsa (Chebyshev uchun). Eksponensial konvergentsiya silliq funksiyalar uchun,
lekin global - discontinuities muammosi.

Time-dependent PDE: separation of variables, semi-discretization. Advection
tenglamasi ou/ot + ¢ du/0x = 0: upwind schemes (ustida), Lax-Wendroff, flux-limiter
usullari. Nonlinear conservation laws: shock’lar riemann solvers bilan. Hyperbolic,
parabolic, elliptic PDE turli xususiyatlar va usullar talab qiladi.

Tasvirlarni qayta ishlash va signallar tahlili

Ragamli tasvir - ikki o‘lchovli massiv I(i, j), bu yerda 1, j - piksel koordinatalari,
qiymat - intensivlik (grayscale) yoki rang (RGB). Rangli tasvir - uch o‘lchovli massiv
I, j, ), ¢ € {R, G, B}. Tasvirni yuklash, saglash, ko‘rsatish - asosiy operatsiyalar.
Format konvertatsiyasi (JPEG, PNG, BMP), rang modellari (RGB, HSV, YCbCr).

Konvolyutsiya - tasvirlarni filtrlash asosi. Diskret konvolyutsiya: (I * K)(1, j) = Zn
¥, I(i-m, j-n) K(m, n), bu yerda K - filtr kerneli (kernel). Gaussian blur: K - Gaussian
funksiyasi, noise ni kamaytiradi. Sharpening: K center qiymat katta, qo‘shnilar manfiy.
Edge detection: Sobel, Prewitt, Canny kernellari gradiyentni hisoblaydi.

Fourier transformatsiyasi tasvir chastotali komponentlarini tahlil qiladi. 2D DFT:
F(u, v) = % & 1(1, j) e*{-2mi(ui/M + vj/N)}. Fast Fourier Transform (FFT) O(N log N)
tezligida. Chastotali filtrlash: F(u, v) ni ko‘paytirish (low-pass, high-pass, band-pass),
keyin teskari FFT. Qo‘llanmalar: noise filterlash, pattern analysis, compression.

Morphological operations binary yoki grayscale tasvirlarda strukturaviy
o‘zgarishlar. Dilation: A @ B= {z| (B) zN A # @}, ob’ektlarni kengaytiradi. Erosion:
A © B ={z|B z < A}, ob’ektlarni sigadi. Opening: erosion keyin dilation, kichik
noise’ni olib tashlaydi. Closing: dilation keyin erosion, kichik teshiklarni to‘ldiradi.
Structuring element B - kernel.

Image segmentation - tasvirni mazmunli qismlarga bo‘lish. Thresholding: binary
segmentation, I(i, j) > T — 1, aks holda 0. Otsu usuli: optimal threshold avtomatik
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topish. Region growing: seed nuqtadan boshlash, o‘xshash qo‘shnilarni qo‘shish.
Watershed algoritmi: gradient kabi "topografiya" ga qarab bo‘lish.

Feature extraction - tasvir xususiyatlarini ajratib olish. Edge detection (Canny),
corner detection (Harris), blob detection (LoG, DoG). SIFT (Scale-Invariant Feature
Transform), SURF - keypoints va descriptors. Deep learning usullari (CNN) avtomatik
feature learning: past darajali (edges) dan yuqori darajali (ob’ektlar) gacha.

Statistik tahlil va ma’lumotlar modellash

Ma’lumotlar matritsasi X (n X p): n - observations, p - features. Preprocessing:
normalization (mean=0, std=1), standardization, missing values imputation. Outlier
detection: statistical tests, visualization (boxplot, scatter), isolation forest.

Principal Component Analysis (PCA) o‘lchamni kamaytirish. Kovariatsiya
matritsasi X = (1/(n-1)) X™X. Xos yoyilmasi: £ = QAQT. Prinsipal komponentlar - Q
ning ustunlari (xos vektorlar). Proyeksiya: Y = XQ. Variance explained: Ai/ Z; A;. Scree
plot: optimal komponentlar sonini tanlash. Qo‘llanmalar: visualization (2D/3D), noise
reduction, compression.

Linear regression: y = X + €. Least squares: = (XTX)'XTy. Ridge regression:
B ridge = (X™X + Al)'XTy, regularization multicollinearity va overfitting ni hal qiladi.
Lasso: L1 regularization, feature selection. Elastic net: L1 va L2 kombinatsiyasi.
Generalized linear models (GLM): logistic regression (binary y), Poisson regression
(count data).

Time series tahlili: {y:} - vaqt bo‘yicha kuzatishlar. Autocorrelation function
(ACF): p(k) = Corr(y:, yi+«), temporal dependencies ni ko‘rsatadi. ARIMA model:
AutoRegressive Integrated Moving Average. State-space models va Kalman filtering:
x¢ = Ax1 + wy (latent state), y. = Cx; + v (observation). Forecasting: trend, seasonality,
noise komponentlari.

Multivariate statistics: ko‘p o‘zgaruvchilar orasidagi munosabatlar. Covariance
matrix X - o‘zgaruvchilar orasidagi bog‘liglik. Correlation matrix R - normalized.
Mahalanobis distance: d*(x, p) = (x - p)T ! (x - ), correlation hisobga olingan masofa.
Hotelling T? test - multivariate analog of t-test.

Factor analysis latent o‘zgaruvchilarni topadi: X = AF + g, bu yerda F - latent
factors, A - loadings. PCA dan farqi: error term €. Exploratory vs confirmatory factor
analysis. Rotation usullari (varimax, oblimin) interpretatsiyani yaxshilaydi.

Mashinali o‘rganish algoritmlari

Supervised learning: training data (X, y), maqsad: f: X — y mapping o‘rganish.
Loss function L(¥, y): squared loss (regression), cross-entropy (classification).
Empirical risk minimization: min_0 (1/n) X; L(f 0(xi), yi). Regularization: min_ 0 L +
AR(0), bu yerda R - regularizer (L2, L1, elastic net).

Neural networks: multilayer perceptron. Forward pass: ho = x, hi = o(W, hi-1 + b)),
¥ = h_L. Activation functions: sigmoid, tanh, ReLU, Leaky ReLU. Backward pass
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(backpropagation): 0L/OW, va OL/0b; ni zanjir qoidasi orqali hisoblash. Gradient
descent: W; «— W, - a dL/0W,. Mini-batch SGD: kichik batch’larda gradientlarni
hisoblash.

Convolutional Neural Networks (CNN) tasvirlar uchun. Convolutional layer:
feature maps, local receptive fields, weight sharing. Pooling layer: spatial
downsampling (max pooling, average pooling). Architecture: alternating conv-pool
layers, keyin fully connected. Famous architectures: LeNet, AlexNet, VGG, ResNet,
Inception. Transfer learning: pretrained modelfdan feature extraction yoki fine-tuning.

Recurrent Neural Networks (RNN) sequential data uchun. Hidden state: h; = o(W
Xy T Wh hi-1 + b). Backpropagation Through Time (BPTT): gradientlarni vaqt orqaga
tarqatish. Vanishing/exploding gradient muammosi. LSTM va GRU: gating
mechanisms, long-term dependencies. Applications: language modeling, machine
translation, speech recognition.

Unsupervised learning: fagat X, label’siz. K-means clustering: har bir nugta eng
yaqin centroidga, centroidlar yangilanadi. Hierarchical clustering: agglomerative
(bottom-up) yoki divisive (top-down), dendrogram. Gaussian Mixture Models (GMM):
probabilistic clustering, EM algorithm. Dimensionality reduction: PCA, t-SNE,
autoencoders.

Reinforcement learning: agent muhitda harakat qiladi, reward oladi. Markov
Decision Process (MDP): states, actions, transitions, rewards. Policy m(als): qaysi
action state s da. Value function V/*n(s): expected cumulative reward. Q-learning: Q(s,
a) = reward + y max_a’ Q(s’, a’) (Bellman equation). Deep Q-Networks (DQN): Q-
function neural network bilan approksimatsiya. Policy gradient methods, Actor-Critic.

Xulosa

Ko‘p o‘lchovli massiv funksiyalarining xususiyatlari va matematik hamda amaliy
masalalarni yechishdagi rolini tadqiq qilish natijasida quyidagi fundamental
xulosalarga kelamiz.

Massiv funksiyalarining tizimli tasnifi va xususiyatlari dasturlash va matematik
modellashtirish uchun muhim asos yaratadi. Elementwise, redutsiya, transformatsiya,
chiziqli va ko‘p chiziqli funksiyalar har biri 0‘z xususiyatlari va qo‘llanish sohalariga
ega. Funksiyalarning kompozitsiyasi murakkab operatsiyalarni oddiy operatsiyalardan
qurish imkonini beradi.

Chiziglilik xossasi matematikaning eng muhim tushunchalaridan biri bo‘lib,
superposition prinsipi, chizigli tizimlar va ko‘plab soddalashtirishlarga olib keladi.
Chizigli operatorlar matritsalar orqali ifodalanadi va ularning xususiyatlari (xos
qiyatlar, singular qiymatlar) chuqur matematik ma’noga ega.

Davomiylik va differensiallanish funksiyalarning analitik xususiyatlarini
tavsiflaydi. Davomiy funksiyalar barqaror, differensiallanuvchi funksiyalar mahalliy
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chiziqli approksimatsiyaga ega. Gradient va Hessian optimallash algoritmlarining
asosini tashkil etadi.

Konvekslik optimallashtirish nazariyasida markaziy rol o‘ynaydi. Konveks
funksiyalar lokal minimumga ega emas, global minimum mavjud va gradient usullari
yaxshi ishlaydi. Konveks optimallashtirish ko‘plab amaliy masalalarda qo‘llaniladi.

Chizigli algebra operatsiyalari ilmiy hisoblashlarning asosini tashkil etadi.
Matritsalarni ko‘paytirish, chizigli tizimlarni yechish, xos qiyatlar va SVD - barchasi
massiv funksiyalari orqali amalga oshiriladi. Samarali algoritmlar va kutubxonalar
(BLAS, LAPACK) amaliy tizimlar uchun muhim.

Differensial tenglamalarni raqamli yechish massiv diskretizatsiyasiga asoslanadi.
ODE va PDE usullari chekli farglar, chekli elementlar va spektral usullarni o‘z ichiga
oladi. Bu usullar fizika, muhandislik va boshqga sohalarda keng qo‘llaniladi.

Tasvirlarni gayta ishlash va signallar tahlili massiv operatsiyalarining muhim
qo‘llanmasi hisoblanadi. Konvolyutsiya, Fourier transformatsiyasi, morphological
operations va feature extraction tasvirlarni tahlil qilish va tushunishda asosiy vositalar.

Statistik tahlil va ma’lumotlar modellash ma’lumotlar matritsalari orqali amalga
oshiriladi. PCA, regression, time series, multivariate statistics - barchasi chiziqli
algebra va statistikaning kombinatsiyasidir. Bu usullar ma’lumotlar fanida keng
qo‘llaniladi.

Mashinali o‘rganish algoritmlari massiv operatsiyalarining eng murakkab
qo‘llanmalaridan biri. Neural networks, CNN, RNN va reinforcement learning tensorli
hisoblashlarga asoslanadi. Backpropagation, gradient descent va boshga optimallash
usullari massiv funksiyalarining chuqur tushunishini talab giladi.

Umumiy xulosa: ko‘p o‘lchovli massiv funksiyalari zamonaviy matematik va
amaliy fanlarning asosiy vositasi hisoblanadi. Ularning xususiyatlarini to‘liq tushunish
samarali algoritmlar yaratish, murakkab masalalarni yechish va yangi tadqiqot
yo‘nalishlarini ochish uchun zarur.
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