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Annotatsiya: Ushbu ishda funksional qatorlar nazariyasining asosiy 

tushunchalari va muhim xossalari tahlil qilinadi. Funksional qator tushunchasi, uning 

yaqinlashish masalalari hamda nuqtaviy va bir xilda yaqinlashish tushunchalari batafsil 

o‘rganiladi. Qatorlarning yaqinlashishini tekshirishda qo‘llaniladigan Veyershtrass 

mezoni, Dirixle va Abel mezonlari keltirilib, ularning amaliy qo‘llanishi misollar orqali 

yoritiladi. 
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Abstract: This work analyzes the basic concepts and important properties of the 

theory of functional series. The concept of a functional series, its convergence issues, 

and the concepts of pointwise and uniform convergence are studied in detail. The 

Weierstrass criterion, Dirichlet and Abel criteria used to check the convergence of 

series are presented, and their practical application is illustrated by examples. 
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 (2) sonli qator hosil bo‘ladi. 
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yaqinlashuvchi bo‘ladi. (2) qatorning yaqinlashuvchi nuqtalarning to‘plami (1) ning 

yaqinlashuvchi sohasi deyiladi. Agar (1) qator biror E  sohaning barcha nuqtalarida 

yaqinlashuvchi bo‘lsa, u E sohada yaqinlashuvchi va uning yig‘indisi ham E ga tegishli 
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Darajali qatorlar  

Funksional qatorlarning xususiy ko‘rinishi bo‘lgan darajali qatorlar amalyotda 

ko‘proq ishlatiladi.  
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 qator yaqinlashuvchi. Umuman (4) yoki (5) ko‘rinishidagi darajali qatorlaring 

yaqinlashish doirasining radiusi Dalamder – Adamar formulasi yordamida topiladi. 
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Demak, qatorning yaqinlashish radiusi (sohasi): 
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yaqinlashish sohasi butun kompleks tekislikdan iborat.  
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bo‘lgani uchun yaqinlashish sohasi birlik doiraning ichki nuqtalaridan iborat.  
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