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Изучение неподвижных точек произвольных операторов, в том числе 

квадратичных стохастических операторов, а также их типов и применений, 

является одной из важных задач [1-18].  

С проблемами, связанными с квадратичными стохастическими операторами 

и их применениями, были проведены важные исследования, и в настоящее время 

такие исследования также продолжаются. 

Определение 1. Если для любых элементов 𝑥, 𝑦 ∈ 𝐷(𝐴) и любых чисел 

𝛼, 𝛽 𝜖 ℂ выполняется условие 𝛼𝑥 + 𝛽𝑦 ∈ 𝐷(𝐴) и равенство 

𝐴(𝛼𝑥 + 𝛽𝑦) = 𝛼𝐴𝑥 + 𝛽𝐴𝑦 

то оператор 𝐴 называется линейным оператором. 

Определение 2. Пусть 𝐴 и 𝐵 - два линейных оператора, причём 𝐴 действует 

из пространства 𝐸 в пространство 𝐸1, а 𝐵 - из пространства 𝐸1 в пространство 𝐸2. 
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Оператор, который каждому элементу 𝑥 ∈ 𝐸 ставит в соответствие элемент 

𝑧 =  𝐵(𝐴𝑥) в пространстве 𝐸2 , называется произведением (или суперпозицией) 

операторов 𝐴 и 𝐵. 

Определение 3. Квадратичным стохастическим оператором называется 

оператор 

𝑉: 𝑆𝑛−1 → 𝑆𝑛−1 

𝑉: 𝑥𝑘
′ = ∑ 𝑃𝑖𝑗,𝑘𝑥𝑖𝑥𝑗 , 𝑘 = 1, 𝑛̅̅ ̅̅ ̅

𝑛

𝑖,𝑗=1

 (1) 

где 𝑃𝑖𝑗,𝑘 ≥ 0, 𝑃𝑖𝑗,𝑘 = 𝑃𝑗𝑖,𝑘, ∑ 𝑃𝑖𝑗,𝑘 = 1𝑛
𝑘=1 .  

Определение 4. Точка x∗ ∈ 𝑆𝑚−1 назавем неподвижными точкам для 

оператора V, если V(x∗ ) = x∗ и множество всех неподвижных точек обозначается 

Fix(V). 

Определение 5. Если 𝐽 якобиан оператора 𝑉 в неподвижной точке 𝜆 не имеет 

собственных значений на единичной окружности, то такая точка 𝜆 называется 

гиперболической неподвижной точкой. 

Типы гиперболических неподвижных точек: 

Если для якобиана 𝐽(𝜆) матрицы все собственные значения по модулю 

меньше единицы, то неподвижная точка 𝜆 называется притягивающей. 

Если все собственные значения по модулю больше единицы - то 

отталкивающей, а во всех остальных случаях - седловой точкой [18–27]. 

В данной статье мы рассмотрим оператор B=A∙V (суперпозиции оператора 

A и V), где оператор A и V определяется матрицами  

A=(
𝛼 0 0
𝛽 𝛾 0

1 − 𝛼 − 𝛽 1 − 𝛾 1 
) и 

𝑉𝑎,𝑏,𝑐 = {

𝑥1
∗ = 𝑥1(1 + 𝑎𝑥2 − 𝑏𝑥3),

𝑥2
∗ = 𝑥2(1 − 𝑎𝑥1 + 𝑐𝑥3),

𝑥3
∗ = 𝑥3(1 + 𝑏𝑥1 − 𝑐𝑥2),

 

где a,c ∈ [-1,0] и b,α ,β, γ, α + β ∈ (0,1). 

Через ei = (𝛿1𝑖 , . . . , 𝛿𝑚𝑖)  ∈ 𝑆𝑚−1, 𝑖 = 1,2, . . . , 𝑚, обозначим вершины 

симплекса, где 𝛿𝑖𝑗 − символ дельта Кронекера. 

Теорема 1. Для стохастического оператора 𝐵 справедливы следующие: 

𝑖) 𝐹𝑖𝑥(𝐵) = e3 =(0,0,1); 

ii) e3 =(0,0,1) является притягивающая. 

Доказательство. 

𝐵 = 𝐴 (𝑉𝑎,𝑏,𝑐(𝑥)) = (
𝛼 0 0
𝛽 𝛾 0

1 − 𝛼 − 𝛽 1 − 𝛾 1
) (

𝑥1(1 + 𝑎𝑥2 − 𝑏𝑥3)

𝑥2(1 − 𝑎𝑥1 + 𝑐𝑥3)

𝑥3(1 + 𝑏𝑥1 − 𝑐𝑥2)
) = 
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= (

𝛼𝑥1(1 + 𝑎𝑥2 − 𝑏𝑥3)

𝛽𝑥1(1 + 𝑎𝑥2 − 𝑏𝑥3) + 𝛾𝑥2(1 − 𝑎𝑥1 + 𝑐𝑥3)

(1 − 𝛼 − 𝛽)𝑥1(1 + 𝑎𝑥2 − 𝑏𝑥3) + (1 − 𝛾)𝑥2(1 − 𝑎𝑥1 + 𝑐𝑥3) + 𝑥3(1 + 𝑏𝑥1 − 𝑐𝑥2)
) (1) 

Найдём неподвижные точки оператора 𝐵 (𝐵𝑥 = 𝑥). 

{

𝑥1 = 𝛼𝑥1(1 + 𝑎𝑥2 − 𝑏𝑥3)

𝑥2 = 𝛽𝑥1(1 + 𝑎𝑥2 − 𝑏𝑥3) + 𝛾𝑥2(1 − 𝑎𝑥1 + 𝑐𝑥3)

𝑥3 = (1 − 𝛼 − 𝛽)𝑥1(1 + 𝑎𝑥2 − 𝑏𝑥3) + (1 − 𝛾)𝑥2(1 − 𝑎𝑥1 + 𝑐𝑥3) + 𝑥3(1 + 𝑏𝑥1 − 𝑐𝑥2)
 (2) 

Первое уравнение системы (2) решаем относительно 𝑥1. 

(1 − 𝛼(1 + 𝑎𝑥2 − 𝑏𝑥3))𝑥1 = 0 =>  𝑥1 = 0, 

𝛼(1 + 𝑎𝑥2 − 𝑏𝑥3) = 1 => (1 + 𝑎𝑥2 − 𝑏𝑥3) =
1

𝛼
 . 

Если 𝛼 = 1, то 𝑎𝑥2 = 𝑏𝑥3. Поскольку 𝑎 < 0 , 𝑏 > 0 то такой вариант не 

можеть быть . 

Значить, 0 < 𝛼 < 1 => 𝑎𝑥2 + 𝑏𝑥3 =
1

𝛼
− 1 > 0 𝑎𝑥2 > 𝑏𝑥3,так как  

𝑎 < 0, 𝑏 > 0 то этот вариант тоже не можеть быть.  

От второго уравнения (2) уравнение системы найдем 𝑥2. 

𝑥2 = 𝛽𝑥1 + 𝛼𝛽𝑥1𝑥2 − 𝛽𝑏𝑥1𝑥3 + 𝛾𝑥2 − 𝛾𝑎𝑥1𝑥2 + 𝛾𝑐𝑥2𝑥3 

(1 − 𝛼𝛽𝑥1 − 𝛾 + 𝛾𝑎𝑥1 − 𝛾𝑐𝑥3)𝑥2 = 𝛽𝑥1 − 𝛽𝑏𝑥1𝑥3 = 𝛽𝑥1(1 − 𝑏𝑥3) 

𝑥2 =
𝛽𝑥1(1 − 𝑏𝑥3)

1 − 𝑎𝛽𝑥1 − 𝛾 + 𝛾𝑎𝑥1 − 𝛾𝑐𝑥3 
 ,  

𝑥1
∗ = 0 , 𝑥2

∗ = 0, 𝑥3
∗ = 1 − 𝑥1

∗ − 𝑥2
∗ = 1 

Это показиваеть, что 𝐞𝟑 =(0,0,1) является неподвижная точка для оператора 

𝐵 . 

Теперь определим тип неподвижной точки 𝐞𝟑 =(0,0,1) для оператора 𝐵 . Из 

того, что 1 и 2 уравнении системы (2) следует что: 𝑥3
∗ = 1 − 𝑥1

∗ − 𝑥2
∗ 

{
𝑥1 = 𝛼𝑥1(1 + 𝑎𝑥2 − 𝑏(1 − 𝑥1 − 𝑥2))

𝑥2 = 𝛽𝑥1(1 + 𝑎𝑥2 − 𝑏(1 − 𝑥1 − 𝑥2)) + 𝛾𝑥2(1 − 𝑎𝑥1 + 𝑐(1 − 𝑥1 − 𝑥2))
 

{
𝑥1 = 𝛼𝑥1(1 + 𝛼𝑥2 − 𝑏 + 𝑏𝑥1 + 𝑏𝑥2) = 𝛼𝑥1 + 𝛼𝛼𝑥1𝑥2 − 𝑏𝛼𝑥1 + 𝛼𝑏𝑥1

2 + 𝛼𝑏𝑥1𝑥2

𝑥2 = 𝛽𝑥1 + 𝛼𝛽𝑥1𝑥2 + 𝛽𝑏𝑥1 + 𝛽𝑏𝑥1
2 + 𝛽𝑏𝑥1𝑥2 + 𝛾𝑥2 − 𝛾𝛼𝑥1𝑥2 + 𝛾𝑐𝑥2 − 𝛾𝑐𝑥1𝑥2 − 𝛾𝑐𝑥2

2 

{
𝑥1

′ = 𝛼(1 − 𝑏)𝑥1 + 𝛼(𝛼 + 𝑏)𝑥1𝑥2 + 𝛼𝑏𝑥1
2

𝑥2
′ = 𝛽(1 − 𝑏)𝑥1 + (𝛽𝛼 + 𝛽𝑏 − 𝛾𝛼 − 𝛾𝑐)𝑥1𝑥2 + 𝛽𝑏𝑥1

2 + 𝛾(1 + 𝑐)𝑥2 − 𝛾𝑐𝑥2
2 

𝜕𝑥1
′

𝜕𝑥1
= 𝛼(1 − 𝑏) + 𝛼(𝛼 + 𝑏)𝑥2 + 2𝛼𝑏𝑥1;  

 
𝜕𝑥1

′

𝜕𝑥2
= 𝛼(𝛼 + 𝑏)𝑥1; 

𝜕𝑥2
′

𝜕𝑥1
= 𝛽(1 − 𝑏) + (𝛽𝛼 + 𝛽𝑏 − 𝛾𝛼 − 𝛾𝑐)𝑥2 + 2𝛽𝑏𝑥1 

𝜕𝑥2
′

𝜕𝑥2
= (𝛽𝛼 + 𝛽𝑏 − 𝛾𝛼 − 𝛾𝑐)𝑥1 + 𝛾(1 + 𝑐) − 2𝛾𝑐𝑥2 
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𝜕𝑥1
′

𝜕𝑥1
|

𝐞𝟑 =(0,0,1)

= 𝛼(1 − 𝑏); 
𝜕𝑥1

′

𝜕𝑥2
|

𝐞𝟑 =(0,0,1)

= 0;  

 
𝜕𝑥2

′

𝜕𝑥1
|

𝐞𝟑 =(0,0,1)

= 𝛽(1 − 𝑏); 
𝜕𝑥2

′

𝜕𝑥2
|

𝐞𝟑 =(0,0,1)

= 𝛾(1 + 𝑐);  

𝐼 = (
𝛼(1 − 𝑏) 0
𝛽(1 − 𝑏) 𝛾(1 + 𝑐)

), 

|
𝛼(1 − 𝑏) − 𝜆 0

𝛽(1 − 𝑏) 𝛾(1 + 𝑐) − 𝜆
| = 0; 

(𝛼(1 − 𝑏) − 𝜆)(𝛾(1 + 𝑐) − 𝜆) = 0 

𝜆1 = 𝛼(1 − 𝑏), 𝜆2 = 𝛾(1 + 𝑐) 

Так как 𝑏 > 0, 𝑐 < 0, 0 < 𝛼 < 1 и 0< 𝛾 <1,поэтому 𝜆1 < 1, 𝜆2 < 1. 

Это показываеть, что неподвижная точка 𝐞𝟑  = (0,0,1) – пртягягивающая. 

Теорема доказано. 
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