Matritsa rangi. Matritsa rangini hisoblash usullari

Authors

  • Maxsud Tulqin o‘g’li Usmonov Toshkent axborot texnologiyalari universiteti Qarshi filiali

Keywords:

Matritsa, k-chi tartibli minor, matritsa rangi, minorlar usuli, ekvivalent almashtirishlar

Abstract

Ixtiyoriy o’lchamli matritsaning bir necha satr yoki ustunlarini o chirishdanʻʻhosil bo‘lgan kvadrat matritsa determinantiga matritsa osti minori deyiladi. Bukvadrat matritsa tartibi matritsa osti minorning tartibi deyiladi. Agar berilganmatritsa kvadrat shaklda bo lsa, uningʻeng katta tartibli minori o zigaʻteng. Ixtiyoriy oʻlchamli matritsaning k ta satr va k ta ustunlarini ajratilgan boʻlib, bu satr va ustunlar kesishmalarida yotgan elementlaridan hosil bo‘lgan kvadrat matritsa determinantiga matritsaning k chi tartibli minori deyiladi.

References

Gilbert Strang “Introduction to Linear Algebra”, USA, Cambridge press, Edition, 2016.

Grewal B.S. “Higher Engineering Mathematics”, Delhi, Khanna publishers, Edition, 2012.

Raxmatov R.R., Adizov A.A., Tadjibayeva Sh.E., Shoimardonov S.K. Chiziqli algebra va analitik geometriya. O‘quv qollanma. Toshkent 2020.

Rаxмаtоv R.R., Adizov A.A. “Chiziqli fazo va chiziqli operatorlar” O‘quv uslubiy qollanma. TATU, Toshkent 2019.

Соатов Ё.У. “Олий математика”, Т., Ўқитувчи нашриёти, 1- 5 қисмлар, 1995.

Рябушко А.П. и др. “Сборник индивидуальных заданий по высшей математике”, Минск, Высшая школа, 1-3 частях, 1991.

Мирзиёев Ш. Буюк келажагимизни мард ва олижаноб халқимиз билан бирга қурамиз. -Т.: Ўзбекистон, 2017. - 488 бет.

Мирзиёев Ш.М. Қонун устуворлиги ва инсон манфаатларини таъминлаш-юрт тараққиёти ва халқ фаровонлигининг гарови. -Т.: Ўзбекистон, 2017.

Мирзиёев Ш.М. Эркин ва фаровон, демократик Ўзбекистон давлатини биргаликда барпо этамиз. Т.: Ўзбекистон, 2017.

Adizov A.A., Xudoyberganov M.O‘. Amaliy matematika. O‘quv uslubiy qo‘llanma. Toshkent. 2014.

Шодиев Т.Ш. Аналитик геометрия ва чизиқли алгебра. Тошкент “Ўқитувчи” 1984.

Ильин В. А., Позняк Э. Г. Линейная алгебра. - 6-е изд., стер. - М.: ФИЗМАТЛИТ, 2004.

Задорожный В. Н. и др. Высшая математика для технических университетов. Часть I. Линейная алгебра. - Томск: Изд-во ТПУ, 2009.

Данко П.С., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах. Седьмое издание. -М.: Высшая; школа, 2015.

Семёнова Т.В. Высшая математика: учебное пособие для студентов технических вузов. Часть 1. - Пенза: Пензенский гос. ун-т, 2008.

Макаров Е. В., Лунгу К. Н. Высшая математика: руководство к решению задач: учебное пособие, Часть 1, Физматлит. 2013.

Минорский В.И. Сборник задач по высшей математике. М: Наука, 1987.

Беклемешев Д.В., Петрович А.Ю., Чуберов И.А. Сборник задач по аналитической геометрии и линейной алгебре. -М.: Наука, 1987.

Бугров Я.С., Николский С.М. Сборник задач по высшей математике, - М.: Наука. 1997.

Downloads

Published

2021-08-26

How to Cite

Usmonov, M. T. o‘g’li. (2021). Matritsa rangi. Matritsa rangini hisoblash usullari. Science and Education, 2(8), 280-291. Retrieved from https://openscience.uz/index.php/sciedu/article/view/1758