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Abstract: The energy of a graph G is equal to the total of its absolute eigenvalues, 

which is equal to the sum of its singular adjacency matrix values. Let ,x y and z  be 

matrices such that x y z+ = . The Ky-Fan theorem proves an inequality between the 

sum of the singular values of z  and the sum of the singular values of x  and y . Several 

new inequalities as well as fresh proofs of several previously known inequalities are 

produced when this theorem is applied to the notion of graph energy. 
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Introduction 

Simple graphs are the focus of the essay. Let ( ),G V E=
be such a graph with a 

vertex. 

Set ( )V V G=
and the edge set ( )E E G=

. When the order and size ofG are n andm , 

respectively, i.e,
V n=

and 
E m=

, we say that G is a ( ),n m
- graph. 

Let ( )A A G=
 represent the ( )0,1

- adjacency matrix of G . The spectrum of the 

graph  2G
is made up of its eigenvalues 1 2, ,..., n   . 

If ( )iV V G
, then id  denotes the vertex’s degree with 1,2,...i n= . ( )D D G=

represents the ( ),i i
-entry of the diagonal matrix of order n . 

Then 

( ) ( ) ( ) ( )1L L G D G A G= = −
 

The Laplacian matrix of G  is designated as (1).  

The Laplacian spectrum of the graph G  is formed by its eigenvalues 1 2, ,..., n    

 7,8,17
. 

We will also require a second Laplacian-type matrix in the subsequent discussion, 

which is defined as 

( ) ( ) ( ) ( )† † : 2L L G D G A G= = +
 

The definition of the graph G’s energy is 
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( )
1

: .
n

i

i

E E G 
=

= =
 

when contrasted with its Laplacian energy 

( ) ( )
1

2
: 3

n

i

i

m
LE LE G

n


=

= = −
 

The graph invariants energy and Laplacian energy are currently the subject of 

extensive research. A common A current bibliography, which only includes papers 

published in 2001 and later, can be found online at http://www.sgt.pep.ufrj.br and 

currently includes about 150 references. For more information on graph energy theory 

See the review [9] and the book [12]. The most recent papers [14, 21–22]. 

Provide an overview of the fundamentals of Laplacian energy. 

Let nI  be the order n unit matrix. It will be important to note for the considerations 

that follow that, instead, via Eq. (3), the Laplacian energy can also be expressed as 

( ) ( )
1

4
n

i

i

LE G 
=

=
 

Where , 1,2,...,i i n = are the eigenvalues of the matrix ( ) ( )2 / nL G m n I−
. 

I. The Ky-Fan theorem 

Assume that M is a square matrix of real and symmetric order n . Consider the 

singular values of ( )is M
,where 1,2,...,i n=  as well as its eigenvalues, For is then 

( ) ( )i is M x m=
for 1,2,...,i n= The energy of the graph G  is known by Nikiforov [18] to 

be the sum of the singular values of its adjacency matrix ( )A G
. The following theorem, 

which Fan first established [5], suggests that this observation is extremely significant 

for the theory of graph energy. 

Theorem 1 [5]. Assume that x y z+ = and Let ,x y and z  be square matrices of 

order n . Then 
( ) ( ) ( )

1 1 1

n n n

i i i

i i i

s X s Y s Z
= = =

+   
 

Equality holds if and only if there exists an orthogonal matrix P where PX and PY

are both positive semi-definite. 

You can read more about the Ky Fan theorem in [3, 4] and the references cited 

there. 

II. Some basic applications of the Ky Fan theorem 

Since Theorem 1 states that for graphs
,x yG G

 and zG  whose adjacency matrices 

meet the requirement 
( ) ( ) ( ).x y zA G A G A G+ =

 

( ) ( ) ( ).x y zE G E G E G+ 
 

The following corollaries list some particular examples of this inequality: 
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Corollary 2. Assume that G  is an order n graph, and that G  stands for it’s 

complement. Then 

( ) ( ) 2 1E G E G n+  −
 

If and only if nG K  or nG K , equality is maintained. 

Proof. By noting that 
( ) ( ) ( )nA G A G A K+ =

and ( ) ( )2 1nE K n= −
the inequality 

follows. Assume that the eigenvalues of G  are for the purpose of establishing the 

requirements for equality. 

( ) ( ) ( )1 2 nG G G   
 

Then  

( ) ( ) ( ) ( )

( ) ( )

12 2 .

22 4
2 2 2

2

E G E G G G

m G nm G
n

n n n

 +  +

 
 + = = − 

   

G  must be regular, ( ) ( )12E G G=
, and

( ) ( )12E G G=
 equality is only possible if 

all three conditions are met. If so, it must be ( )2 0G 
 and 

( )2 0G 
since the energy 

of a graph is equal to twice the sum of its positive eigenvalues. To put it another way, 

equality is only achieved if and only if both G  and G  have one and only one positive 

eigenvalue. Then, we must separately take into account each of the following three 

scenarios: 

(i) G  has a negative eigenvalue, meaning that nG K .  

(ii)G  has no positive eigenvalue. i.e, nG K  indicating that nG K . 

(iii) There is just one positive eigenvalue shared by both G  and G . 

Smith’s theorem [19] states that both G  and G  would then be full multipartite 

graphs. As opposed to their complements, which are disconnected, complete 

multipartite graphs are connected, making this impossible. 

Corollary 3: Let B be the bipartite complement of B , which is a bipartite graph 

with a b+ vertices. 
( ) ( ) 2E B E B ab+ 

 follows. 

If and only if abB K or a bB K + ,equality is maintained. 

Proof. The inequality is shown by noting that 
( ) ( ) ( ).a bA B A B A K+ =

and 

( ). 2a bE K ab=
. The case of equality is handled in a manner that is comparable to the 

proof of Corollary 2. 

Corollary 4a: Assume thatG e−  is the subgraph that results from eliminating the 

edge e from graphG . Then 
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( ) ( ) ( )2 5E G E G e − +
 

The outcome mentioned in this corollary 4a was already disclosed in [4]. The 

equality in (5) was demonstrated in [4] to hold only when e is an isolated edge in G . 

We obtain by repeatedly applying (5) to all edges of a ( ),n m
-graph 

( ) ( )2 6E G m
 

with equality, which is also a previously established upper bound [1], if and only 

if G  has m  isolated edges and 2n m− isolated vertices. We obtain the following by 

repeatedly applying equation (5) to all edges of a ( ),n m
-graph, excluding those that end 

at a maximum-degree vertex: 

Corollary 4b: If  is the highest degree at a vertex in a ( ),n m
- graphG , then 

( ) ( ) ( )2 2 7E G m − − 
 

If and only if G is a union of the star 1,s m+ − , m isolated edges, and 2 1n m− ++

isolated vertices, then equality in (7) holds. 

Evidently, the bound (7) is superior to (6). It appears to be the first time it has 

been mentioned here. But if 2m n , (7) is weaker than some other established upper 

bounds [9], such as McClleland’s 2mn . 

Similar to this, we also obtain the following energy upper bounds: 

Corollary 4c. If G is a connected ( ),n m
-graph and T  is its spanning tree, then 

( ) ( ) ( )2 1E G m n E T − + +
.If G  T, the inequality is rigid. 

Corollary 4d. If G  is a Hamiltonian ( ),n m
-graph, then ( ) ( ) ( )2 1 nE G m n E C − + +

 

where nC stands for the n -vertex cycle. If nG C , then the inequality is strict. 

 

Corollary 4e. ( ) ( ) ( )12 dE G m d E P + − +
,where kP  is the k -vertex path, if d  is the 

diameter of a connected graph G . The inequality is strict if 1dG P + . 

We mention this in passing. 

( )

( )

( )

( )

4cos
0 mod 4

sin

4
2 mod 4

sin

2
1 mod 2

sin
2

n

n if n

n

E C if n

n

if n

n










 =




= =


 =

  

And 
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( )

( )

( )

( )

( )

( )

2
2 0 mod 2

sin
2 1

2cos
2 1

2 1 mod 2

sin
2 1

n

if n

n

E P

n
if n

n








− =


+


= 
 +
 − =

 +  

III. Relating Laplacian energy and energy 

We start by pointing out yet another straightforward Ky-Fan theorem 

consequence. Let d represent the graph’s average vertex degree ( ),n m
-graph of G . Of 

course, 

2m
d

n
=

. 

Corollary 5. For a ( ),n m
-graph ofG , where the vertex degrees are 1 2, ,..., nd d d ,and 

the average vertex degree is d . 

( ) ( )
1

n

i

i

LE G E G d d
=

 = −
 

Proof. Rewrite Eq.(1) as 

( )
2 2

n n

m m
L I A D I

n n

   
− = − + −   

     

Consider (4) as well as the fact that the diagonal matrix 

2
n

m
D I

n
−

 has eigenvalues 

of , 1,2,...,id d i n− =  when applying Theorem 1. 

It was hypothesized in [10] that the Laplacian energy is always greater than or 

equal to the regular graph energy. 

( ) ( ) ( )8LE G E G
 

Counter examples were ultimately employed to refute the validity of the 

conjecture [16,20]. Now, however, we demonstrate that this hypothesis was not 

entirely off the mark. 

Theorem 6. If the graphG  is bipartite, then relation (8) is true. 

Proof. Eqs.(1) and (2) are subtracted, and the result is 
† 2L L A− =  

Which can be written as  

( )† 2 2
2 9n n

m m
L I L I A

n n

   
− − − =   

     

It is generally understood that the matrices L  and
†L have equal spectra in the case 

of bipartite graphs (see, for example, [8]). In context with this, we briefly address 

 

†

1 1 1

2 2 2n n n

i n i n i n

i i i

m m m
s L I s L I s L I LE

n n n= = =

      
− = − = − − =      

      
  
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and inequality (8) is obtained by using the Ky Fan theorem on equation (9). 

We can arrive at a slightly more powerful result using similar reasoning. The 

result of adding (1) and (2) is in passing, we state 
† 2L L D+ =  

From which 

† 2 2 2
2n n n

m m m
L I L I D I

n n n

     
− + − = −     

       
Then by theorem1. 

1

n

i

i

LE d d
=

 −
 

The above inequality, along with the conclusions of Corollary 5 and Theorem 6, 

result in: 

Theorem 7. For a bipartite ( ),n m
- graphG with vertex degrees 1 2, ,..., nd d d and an 

average vertex degree of 
2md

n
=

 

 
( ) ( )

1 1

max
n n

i i

i i

d d EL G E G d d
= =

 
−   + − 

 
 

 
IV. A difference in the intensity of the coalescence of two graphs. 

Two graphs with disjoint vertex sets are G  and H . Allow ( )u V G=
 and ( )v V H=

, by figuring out the vertices u and v , create the graphG H using copies of G and H . 

Consequently
( ) ( ) ( ) 1V G H V G V H= + −

 The graphG H is referred to as theG and H

coalescence with respect to u  and v . 

Theorem 8: Assume that G , H andG H are the afore mentioned graphs. Then 

( ) ( ) ( ) ( )10E G H E G E H +
 

If and only if either u is an isolated vertex of G  or v  is an isolated vertex of H , or 

both, equality is achieved. 

Proof. When the vertices of the graphs G  and H  are appropriately labeled, the 

adjacency matrix of G  and H  takes the form 

 

( )

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T T T T

R x R x

A A G H x y x y B C

y s y s

     
     

= = = + = +
     
            

where x  is the column vector corresponding to the vertex, and ( )R A G u= −
and 

( )S A H v= −
. 

y is the column vector corresponding to the vertex v  in H , and u  inG . 

Then 
( ) ( ) ( ) ( ),i ii i

E G H s A E G s B= =  . Theorem 1 now follows directly from 

Relation (10). 
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Since either x or y is a zero vector in the equality case, it is simple to verify that the 

condition is sufficient. 

The equality in (10) implies the equality in the singular value inequality for the 

necessity section. There is an orthogonal matrix P in the equality case of Theorem 1 

such that both PB and PC are positive semi-definite. Let P  now divide in the way 

described below using the matrix ( )A G H
. 

11 12 13

21 22 23

31 32 33

P P P

P P P P

P P P

 
 

=
 
    

where I stands for an identity matrix that is the proper size. Recall that both 

( )

( )

( )

11 11 21 21 31 31

13 13 23 23 33 33

11 13 21 23 31 33

1 11

1 12

0 13

T T T

T T T

T T T

P P P P P P

P P P P P P

P P P P P P

+ + =

+ + =

+ + =  
Where 1 denotes an identity matrix of appropriate size. Note that both 

11 12 11

21 22 21

31 32 31

0

0

0

T

T

T

P R P x P x

PB P R P x P x

P R P x P x

 +
 

= + 
 +   

And 

13 12 13

23 22 23

33 32 33

0

0

0

T

T

T

P y P y P S

PC P y P y P S

P y P y P S

 +
 

= + 
 +    

symmetry dictates that 31 0P x = and 13 0P y = because and are positive semi-definite. 

At this point, by multiplying equation (13) by 
Tx from the left and y from the right, we 

get 

 ( ) ( )12 23 11 13 21 23 31 33 0
T T T T T T TP x P y x P P y x P P y x P P y= + + =

 

Hence, one of the two scalars ( )12

T
P x

and ( )23P y
must be zero. 

Case 1. ( )12 0
T

P x =
 

The positive semi-definite matrix PB is diagonal entry 21P x should be noted. Due to 

the fact that 21P x  belongs in the entire column, which is zero, and so 11 0P x = . 

 Finally, 11 11 21 21 31 31 0 0 0 0, . , 0T T T T T T Tx x x P P x x P P x x P P x i e x= + + = + + = = . This is due to Eq. 

(11), which states that 0x = . This indicates that G  is isolated vertex of u . 

Case 2. ( )23 0P y =
 

The positive semi-definite matrix PC is diagonal entry 23P y should be noted. Due 

to the fact that 21P x  belongs in the entire column, which is zero, and so 13 0P y = . Finally, 
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13 13 23 23 33 33 0 0 0 0, . , 0T T T T T T Ty y y P P y y P P y y P P y i e y= + + = + + = = . This is due to Eq. (12), which 

states that 0y = . This indicates that H  is isolated vertex of v . 

The idea of hypo energetic graphs was just recently developed [11, 13]. ( )E G n
 

indicates that a graphG of order n  is hypo energetic. For the purposes of the discussion 

at hand, we designate a graph as strongly hypo energetic if ( ) 1E G n −
. (Remember 

that the n-vertex star for 5n  is strongly hypo energetic.) Theorem 8 then yields the 

next: 

Corolarlly 9a: Assume that the graphs ,G H and G H are as in Theorem 8. If G

and H  are both strongly hypo energetic, then G H is also strongly hypo energetic. 

Proof. From(10) and the fact that
( ) ( ) 1E G V G −

and 
( ) ( ) 1E H V H −

 follows: 

( ) ( ) ( ) ( )2 1E G H V G V H V G H + − = −
 

Corolarlly 9b: If G  and H are both strongly hypo energetic (or vice versa), then 

G H are both hypo energetic. 

Conclusion 

Graph energy and Laplacian graph energy, which are the sums of the absolute 

price, the set of special prices, the adjacency matrix, and the Laplacian matrix. Regular 

r-graphs and single-round linked graphs with no hanging vertices are equal, but in all 

other Laplacian graphs, the energy of the graph is larger than or equal to the energy of 

the graph. 

The energy of the graph is always smaller than its two sides if the number of 

vertices in the graph ( ),G n m
is higher than two sides, and this property does not occur 

in the Laplacian energy graph.  
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