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Abstract: This paper aims to solve the Biological Population model problem 

using a hybrid method called fractional generalized homotopy analysis method 

(FGHAM). The fractional derivatives are described by Caputo?s sense. The method 

introduces a significant improvement in this field over existing techniques. Results 

obtained using the scheme presented here agree well with the analytical solutions and 

the numerical results presented in [1]. The convergence region of the Biological 

Population model solutions are clearly identified using form series solutions are 

produced using FGHAM. However, the fundamental solutions of these equations still 

exhibit useful scaling properties that make them attractive for applications.  

Keywords: fractional biological population equation, homotopy generalized 

analysis methd, fractional claculus, mittag-leffer function 

 

Introduction 

Fractional differential equations have excited, in recent years, a considerable 

interest both in mathematics and in applications. They were used in modeling of 

many physical, chemical processes, biology and engineering for example [1], [2], [3], 

[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. Recently, several mathematical 

methods have been developed to obtain exact and approximate analytic solutions 

[15], [1], [13], [14], [16], [17], [18], [17], [19]. Some of these methods use 

transformation in order to reduce equations into simpler equations or systems of 

equations and some other methods give the solution in a series form, which 

converges to the exact solution. An effective and easy to use method for solving such 

equations is needed, the Generalized homotopy analysis method (GHAM) is a 

successful method to find the exact analytical solutions for linear and nonlinear 

problem. GHAM successfully applied into physics, engineering fields, [20], [21], 

[22], [23], [24].  

In this paper, we implement the homotopy analysis method (GHAM) to this 

model with some initial conditions to find explicit solutions and numerical solutions, 

rather than the traditional methods. The GHAM scheme is illustrated by studying the 

biological population model to compute explicit and numerical solutions. 

The main aim of this paper is to solve the nonlinear fractional-order biological 
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population model in the form 

 

 
∂αv

∂tα
=

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ f(v). (1) 

with given initial condition u(x, y, 0), where u denotes the population density 

and f represents the population supply due to births and deaths. We implement the 

homotopy analysis method (GHAM)to this model subject to the initial conditions 

 v(x. y. 0) = f0(x. y). 

Basic definitions 

This section discusses some basic definitions of fractional calculus used in this 

study. The Riemann-Liovillie fractional integrals of the left and right sides are 

defined for any function ϕ(x) ∈ L1(a. b) as:  

 (Ia+
α ϕ)(x) =

1

Γ(α)
∫
∞

a
(x − t)α−1ϕ(t)dt. x > a. 

 (Ia−
α ϕ)(x) =

1

Γ(α)
∫
b

−∞
(x − t)α−1ϕ(t)dt. x < b. 

The left- and right-handed Riemann-Liouville fractional derivatives of order 

α. 0 < α < 1, in the interval [a. b] are defined as:  

 (Da+
α f)(x) =

1

Γ(1−α)

d

dx
∫
x

a
(x − t)−αf(t)dt, 

 (Db−
α f)(x) =

1

Γ(1−α)

d

dx
∫
b

x
(x − t)−αf(t)dt, 

The Caputo fractional derivative of order α is defined as:  

 Da
αf(x) =

1

Γ(m−α)
∫
x

a

f(m)(ξ)

(x−ξ)α−m+1
dξ 

where m− 1 < α ≤ m.m ∈ ℕ.  

The Mittag-Leffler function, which is a generalization of the exponential 

function, is defined as:  

 Eα(z) = ∑∞
k=0

zn

Γ(αn+1)
. 

where α ∈ ℂ. R(α) > 0. 

 

The continuous function f: ℝ → ℝ. t → f(t) has a fractional derivative of order 

kα . For any positive integer k and for any α , 0 < α < 1 , the Taylor series of 

fractional order is given by:  

 f(t + h) = ∑∞
k=0

hαk

(αk)!
f (αk)(t). 0 < α < 1 

where Γ(1 + αk) = (αk)!  

Let f(t) be a continuous function. Then, the solution y(t). y(0) = 0 is given by  

 y = ∫
t

o
f(ξ)(dξ)α = α∫

t

0
(t − ξ)(α−1)f(ξ)dξ. 0 < α < 1 
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Fractional generalized integral transform (fractional G-transform) 

In this section introduces the fractional G-transform and show some of the 

properties which proposed by [?] 

Suppose g(t)  be any time-domain function defined for t > 0 . Then, the 

fractional G-transform of order α of g(t) is denoted by Gα[g(t)] and is defined as: 

 

Gα[g(t)] = Hα[u] = up+1 ∫
∞

0
g(ut)Eα(−t)

α(dt)α

= up−α+1 ∫
∞

0
g(t)Eα (

−t

u
)
α
(dt)α

= lim
M→∞

up−α+1 ∫
M

0
g(t)Eα (

−t

u
)
α
(dt)α

 

which Eα is the Mittag-Leffler function. The fractional G-transform satisfies the 

following properties: If the Laplace Transform of fractional order of a function g(t) 

is ℒαg(t) = Fα(s), the fractional G-transform of order α of g(t) is  

 Gα[g(t)] = Hα[u] = up−α+1Fα (
1

u
). 

If Gα[g(t)] = Hα[u]. then  

 Gα[g(t)] =
1

aα
Hα [

u

a
]. 

where a is a non-zero constant.  

If Gα[g(t)] = Hα[u]. then  

 Gα[g(t − b)] = Eα (
−b

u
)
α
Hα(u). 

If Gα[g(t)] = Hα[u]. then 

 Gα[Eα(a
αtα)g(t)] = (

1

1−au2
)
α
Hα (

u

1−au
). 

The systematic procedure for the FGHAM [?] is given in the next section. 

Fractional generalized homotopy analysis method (FGHAM) 

Consider a fractional non-linear partial differential equation with the following 

initial condition:  

 Dαv(x. y. t) + Rv(x. y. t) + Nv(x. y. t) = g(x. y. t), v(x. y. 0) = f(x. y). (2) 

where Dα  is the fractional differential operator Dα =
∂α

∂tα
, R  is the linear 

differential operator, N  is the non-linear differential operator, and g(x. t)  is the 

source term. The following systematic procedure steps are used to solve the 

non-linear fractional differential equations: 

1. Using fractional G-transform, (2) is transformed to  

 Gα[D
αv(x. y. t)] + Gα[Rv(x. y. t)] + Gα[Nv(x. y. t)] = Gα[g(x. y. t)]. (3) 

  

2. Applying the derivative property of fractional G-transform, (3) is expressed 

as:  

 
Gα[v(x. y. t)] − up+1v0(x. y. t)

+uα(Gα[Rv(x. y. t)] + Gα[Nv(x. y. t)] − Gα[g(x. y. t)]) = 0.
 (4) 
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3. Decomposing the non-linear terms in (4), the following homotopy is 

constructed:  

 (1 − s)Gα[ϕ(x. y. t; s) − v0(x. y. t)] = hsH(x. y. t)N[ϕ(x. y. t; s)]. (5) 

where s ∈ [0.1] is an embedding parameter and ϕ(x. y. t; s) is a real function 

of x. y. t.  and s , while h  is a non-zero auxiliary parameter, H(x. y. t) ≠ 0  is an 

auxiliary function, v0(x. y. t) is an initial condition of v(x,y,t), and ϕ(x. y. t; s) is a 

unknown function. (5) is called the zero-order deformation equation. 

In (5), if s = 0  and s = 1 , then ϕ(x. y. t; 0) = v0(x. y. t)  and ϕ(x. y. t; 1) =

v(x. y. t), respectively. 

If s ∈ [0.1], then the solution is transferred from v0(x. y. t) to v(x. y. t).  

4. Deriving the nth-order deformation equation is following as:  

 Gα[vn(x. y. t) − χnvn−1(x. y. t)] = hH(x. y. t)Rn(𝐯𝐧−𝟏(x. y. t)). (6) 

5. Using the Inverse G-transform on both the sides of (6), the following equation 

is obtained:  

 vn(x. y. t) = χnvn−1(x. y. t) + hGα
−1[H(x. y. t)Rn(𝐯𝐧−𝟏. x. y. t)] (7) 

where  

Rn(𝐯𝐧−𝟏. x. y. t) = Gα[v(x. y. t)] − up+1(1 − χn)v0(x. y. t)

+uα(Gα[Rv(x. y. t)] + Gα[Nv(x. y. t)] − Gα[g(x. y. t)]).
 (8) 

and  

 χ = {
0. n ≤ 1
1. n > 1.

 

6. The following solution is obtained:  

 v(x. y. t) = v0(x. y. t) + ∑∞
n=1 vn(x. y. t). (9)  

Fractional Biological population equation 

In this section, we present some examples with analytical solution to show the 

efficiency of methods described in the previous section.  

Example 5.1: Considering the fractional Biological population equation:  

 
∂αv

∂tα
=

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ v(1 − rv). 

with initial condition  

 v(x. y. 0) = exp [
1

2
√
r

2
(x + y)]. 

Applying the fractional G-transform on both the side of equation (5.1) 

Gα [
∂αv

∂tα
] = Gα [

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ v(1 − rv)]

1

uα
Gα[v(x. y. t)] −

1

uα−1
v(x. y. 0)up = Gα [

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ v(1 − rv)]

Gα[v(x. y. t)] − up+1v(x. y. 0) − uαGα [
∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ v(1 − rv)] = 0.

 

Applying FGHAM:  
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 vn(x. y. t) = χnvn−1(x. y. t) + hGα
−1[Rn(𝐯𝐧−𝟏. x. y. t)]. 

where 

 

Rn(𝐯𝐧−𝟏. x. y. t) = Gα[vn−1(x. y. t)] − (1 − χn)u
p+1v(x. y. 0)

−uαGα [
∂2(vn−1

2 (x.y.t))

∂x2
+

∂2(vn−1
2 (x.y.t))

∂y2
+ vn−1(x. y. t)(1 − rvn−1(x. y. t))] .

 

Solving the above equation for n = 1.2.3. …:  

 
Similarly, v4. v5. …. are estimated and the series solution is obtained, that is: 

 v(x. y. t) = v0(x. y. t) + ∑∞
n=1 vn(x. y. t). (10) 

If h = −1 (10) can be expressed as:  

v(x. y. t) = exp [
1

2
√
r

2
(x + y)]∑∞

n=0
tnα

Γ(nα+1)
= exp [

1

2
√
r

2
(x + y)] Eα(t

α) (11) 

If we put α = 1, we obtained the exact solution  

 v(x. y. t) = exp [
1

2
√
r

2
(x + y)] et = exp [

1

2
√
r

2
(x + y) + t]. (12) 

 
Figure 1: A graphical illustration of the Solution of Biological Population equation 

using various setting of integer and fractional parameter α = 1.0.75.0.50.0.40. 
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Figure 2: The solution for Biological Population equation subject to various setting of 

fractional parameter α = 10.75.0.50.0.40 and auxiliary parameter h = −1 are 

shown in a-d,respectivel  
t  Ev3   Ev4   Ev5  

0.1 0.0002500 0.00001600 9.1000000E − 7 

0.2  0.00210000   0.00023000   0.00002100  

0.3   0.00750000   0.00110000   0.00014000  

0.4   0.01800000   0.00330000   0.00051000  

0.5   0.03700000   0.00780000  0.00140000 

0.6   0.06700000   0.01600000   0.00340000  

0.7   0.11000000   0.02900000   0.00690000  

0.8   0.17000000   0.05000000   0.01300000  

0.9   0.25000000   0.08100000   0.02300000  

1   0.36000000   0.12000000   0.03700000  

Table 1: Absolute error for the Biological Population equation  

 
Figure 3: An error graphical illustration of the Solution of Biological Population 

equation using various setting of integer and fractional parameter α =

1.0.75.0.5.0.40. 

Example 5.2: Considering the following generalized Fractional Biological 

population equation:  

 
∂αv

∂tα
=

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ kv. (13) 

with the initial condition  
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 v(x. y. 0) = √xy. 

Applying the fractional G-transform on both the sides of (13)  

 

Gα [
∂αv

∂tα
] = Gα [

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ kv]

1

uα
Gα[v(x. y. t)] −

1

uα−1
v(x. y. 0)up = Gα [

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ kv]

Gα[v(x. y. t)] − up+1v(x. y. 0) − uαGα [
∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ kv] = 0.

 

Applying FGHAM:  

 vn(x. y. t) = χnvn−1(x. y. t) + hGα
−1[Rn(𝐯𝐧−𝟏. x. y. t)]. 

where 

 

 

Rn(𝐯𝐧−𝟏. x. y. t) = Gα[vn−1(x. y. t)] − (1 − χn)u
p+1v(x. y. 0)

−uαGα [
∂2(vn−1

2 (x.y.t))

∂x2
+

∂2(vn−1
2 (x.y.t))

∂y2
+ kvn−1(x. y. t)] .

 

Solving the above equation for n = 1.2.3. …:  

 
Similarly, v4. v5. …. are estimated and the series solution is obtained, that is: 

 v(x. y. t) = v0(x. y. t) + ∑∞
n=1 vn(x. y. t). (14) 

If h = −1 (14) can be expressed as:  

 v(x. y. t) = √xy∑∞
n=0

kntnα

Γ(nα+1)
= √xyEα(kt

α) (15) 

If we put α = 1, we obtained the exact solution  

 v(x. y. t) = √xyekt (16) 

 
Figure 4: A graphical illustration of the Solution of Biological Population equation 

using various setting of integer and fractional parameter  ,0.50,0.401,0.75 = . 
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 Figure 5: The solution for Biological Population equation subject to various setting 

of fractional parameter  ,0.50,0.401,0.75 =  and auxiliary parameter h = −1 are 

shown in a-d,respectively  
 t   Ev3   Ev4   Ev5  

0.1   0.00620000   0.00160000   0.00028000  

0.2   0.02700000   0.01000000   0.00250000  

0.3   0.06600000   0.03000000   0.00890000  

0.4   0.13000000   0.06600000   0.02200000  

0.5   0.21000000   0.12000000   0.04600000  

0.6   0.32000000   0.20000000   0.08400000  

0.7   0.47000000   0.31000000   0.14000000  

0.8   0.65000000   0.46000000   0.22000000  

0.9   0.86000000   0.46000000   0.32000000  

1   1.10000000   0.89000000   0.47000000  

Table 2: Absolute error for the Biological Population equation  

 
Figure 6: An error graphical illustration of the Solution of Biological Population 

equation using various setting of integer and fractional parameter  ,0.50,0.401,0.75 = . 

Considering the following generalized Fractional Biological population 

equation:  

 
∂αv

∂tα
=

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ v. (17) 

"Science and Education" Scientific Journal / www.openscience.uz July 2023 / Volume 4 Issue 7

ISSN 2181-0842 / Impact Factor 3.848 24



with the initial condition  

 v(x, y, 0) = √sinxsinhy, 

Applying the fractional G-transform on both the sides of (20)  

 

Gα [
∂αv

∂tα
] = Gα [

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ v]

1

uα
Gα[v(x. y. t)] −

1

uα−1
v(x. y. 0)up = Gα [

∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ v]

Gα[v(x. y. t)] − up+1v(x. y. 0) − uαGα [
∂2(v2)

∂x2
+

∂2(v2)

∂y2
+ v] = 0.

 

Applying FGHAM:  

 vn(x. y. t) = χnvn−1(x. y. t) + hGα
−1[Rn(𝐯𝐧−𝟏. x. y. t)]. 

where 

 

 

Rn(𝐯𝐧−𝟏. x. y. t) = Gα[vn−1(x. y. t)] − (1 − χn)u
p+1v(x. y. 0)

−uαGα [
∂2(vn−1

2 (x.y.t))

∂x2
+

∂2(vn−1
2 (x.y.t))

∂y2
+ vn−1(x. y. t)] .

 

Solving the above equation for n = 1,2,3, …:  

 
Similarly, v4. v5. …. are estimated and the series solution is obtained, that is: 

 v(x. y. t) = v0(x. y. t) + ∑∞
n=1 vn(x. y. t), (18) 

If h = −1 (18) can be expressed as:  

 v(x, y, t) = √sinxsinhy∑∞
n=0

tnα

Γ(nα+1)
= √sinxsinhyEα(t

α). (19) 

If we put α = 1, we obtained the exact solution  

 v(x. y. t) = √sinxsinhyet. (20) 

 
Figure 7: A graphical illustration of the Solution of Biological Population equation 

using various setting of integer and fractional parameter  ,0.50,0.401,0.75 = . 
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 t   Ev3   Ev4   Ev5  

0.1   0.04300000   0.01200000   0.00320000  

0.2   0.15000000   0.05400000   0.01900000  

0.3   0.31000000   0.13000000   0.05400000  

0.4   0.54000000   0.26000000   0.12000000  

0.5   0.84000000   0.43000000   0.21000000  

0.6   1.20000000   0.67000000   0.35000000  

0.7   1.70000000   0.97000000   0.53000000  

0.8   2.20000000   1.30000000   0.78000000  

0.9   2.90000000   1.80000000   1.10000000  

1   3.60000000   2.40000000   1.50000000  

Table 3: Absolute error for the Biological Population equation  

 
Figure 9: An error graphical illustration of the Solution of Biological Population 

equation using various setting of integer and fractional parameter α =

1,0.75,0.5,0.40. 

Conclusion 

Employ the FGHAM for finding the exact solutions of generalized biological 

populations equation subject to some initial conditions. Results obtained using the 

scheme presented here agree well with the analytical solutions and the numerical 

results presented in [1], [25] by Adomian?s decomposition method is ADM and 

RVIM. However, in [26] it was shown that ADM does not converge in general, in 

particular, when the method is applied to linear operator equations. It was also shown 

that ADM is equivalent to Picard iteration method, and therefore it might diverge. 

The Homotopy Analysis Method is another technique used to derive an analytic 

solution for nonlinear operators. Different from all other analytic methods, it provides 

us with a simple way to adjust and control the convergence region of solution series 

by choosing proper values for auxiliary parameter h, auxiliary function H(t), and 

auxiliary linear operator L. It is apparently seen that FGHAM is a very powerful and 

efficient technique in finding analytical solutions for wide classes of differential 

equations. They also do not require large computer memory. 
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