Vaqt bo‘yicha kasr tartibli uzulishli koeffitsiyentli diffuziya tenglamasi uchun aralash masala
Keywords:
kasr tartibli diffuziya tenglamasi, anomal diffuziya, 1-tur uzulish, Kaputo hosilasiAbstract
Bu maqolada diffuziya koeffitsiyenti uzulishga ega bo‘lgan kasr tartibli diffuziya tenglamasi uchun aralash masala qaralgan.
References
Cheng J., Nakagawa J., Yamamoto M., Yamazaki T., “Uniqueness in an inverse problem for one-dimensional fractional diffusion equation “, Inverse Problems, 2009.
Alimov Sh., Ashurov R., “Inverse problem of determining an order of the Riemann-Liouville time-fractional derivative”, Inverse Problems, 2021.
Alimov Sh. , Ashurov R., “Inverse problem of determining an order of the Caputo time- fractional derivative for a subdiffusion equation” , Inverse Problems, 2020.
Brezis H., “Functional Analysis”, Masson,Paris,1983
Kilbas A.A., Srivastava H.M ,Trujillo J.J., “Theory and Applications of Fractional Differential Equations”, Elsevier, Amsterdam, 2006
Hald O., “Discontinuous Inverse Eigenvalue Problems”, Pure and Applied Mathematics, 1984
T. Suzuki and R. Murayama, “A uniqueness theorem in an identification problem for coefficients of parabolic equations”, Proc. Japan Acad. Ser. A 56 (1980).
A. Pierce, “Unique identification of eigenvalues and coefficients in a parabolic Problem”, SIAM J. Control and Optim. 17 (1979).
Kuchkorov, E. I., and Sh F. Jumaeva. "A ONE-DIMENSIONAL FRACTIONAL DIFFUSION EQUATION WITH DISCONTINUOUS DIFFUSION COEFFICIENT." MATHEMATICS, MECHANICS AND INTELLECTUAL TECHNOLOGIES TASHKENT-2023 (2023): 44.
Jumaeva Shakhnoza. "Methods of Solving Differential Equations." Science and Education 5.7 (2024): 14-19.
E.I. Kuchkorov, Sh.F. Jumaeva.”Mixed-type problem for the time-fractional diffusion equation with a discontinuous coefficient”. DIFFERENSIAL TENGLAMALARNING ZAMONAVIY MUAMMOLARI VA ULARNING TATBIQLARI 1 (2023), 314
J Shakhnoza. ”Carleman estimate for parabolic equation with a discontinuous diffusion coefficient”. Actual Problems of Mathematical Modeling and Information Technology 1 (2023), 199